A note on the distribution of the partial correlation coefficient with nonparametrically estimated marginal regressions
暂无分享,去创建一个
[1] Maurice G. Kendall,et al. PARTIAL RANK CORRELATION , 1942 .
[2] L. A. Goodman. PARTIAL TESTS FOR PARTIAL TAUS , 1959 .
[3] M. Kendall,et al. The advanced theory of statistics , 1945 .
[4] J. H. Steiger,et al. The comparison of interdependent correlations between optimal linear composites , 1984 .
[5] G. Wahba. Spline models for observational data , 1990 .
[6] G. Gripenberg. Confidence Intervals for Partial Rank Correlations , 1992 .
[7] B. Silverman,et al. Nonparametric regression and generalized linear models , 1994 .
[8] H. White,et al. A Consistent Characteristic-Function-Based Test for Conditional Independence , 2003 .
[9] R. J. Boik,et al. Invited Articles Second-Order Accurate Inference on Simple, Partial, and Multiple Correlations , 2005 .
[10] Stergios B. Fotopoulos,et al. All of Nonparametric Statistics , 2007, Technometrics.
[11] Kyungchul Song. Testing Conditional Independence via Rosenblatt Transforms , 2007 .
[12] H. White,et al. A NONPARAMETRIC HELLINGER METRIC TEST FOR CONDITIONAL INDEPENDENCE , 2008, Econometric Theory.
[13] J. Rombouts,et al. Nonparametric Copula-Based Test for Conditional Independence with Applications to Granger Causality , 2012 .
[14] Kyungchul Song. Testing Conditional Independence via Rosenblatt Transforms , 2007, 0911.3787.
[15] Tzee-Ming Huang. Testing conditional independence using maximal nonlinear conditional correlation , 2010, 1010.3843.