Inverse Sum Indeg Energy of Graphs

Suppose <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> is an <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>-vertex simple graph with vertex set <inline-formula> <tex-math notation="LaTeX">$\{v_{1}, {\dots },v_{n}\}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$d_{i}$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$i=1, {\dots },n$ </tex-math></inline-formula>, is the degree of vertex <inline-formula> <tex-math notation="LaTeX">$v_{i}$ </tex-math></inline-formula> in <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula>. The ISI matrix <inline-formula> <tex-math notation="LaTeX">$S(G)= [s_{ij}]_{n\times n}$ </tex-math></inline-formula> of <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> is defined by <inline-formula> <tex-math notation="LaTeX">$s_{ij}= \frac {d_{i} d_{j}}{d_{i}+d_{j}}$ </tex-math></inline-formula> if the vertices <inline-formula> <tex-math notation="LaTeX">$v_{i}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$v_{j}$ </tex-math></inline-formula> are adjacent and <inline-formula> <tex-math notation="LaTeX">$s_{ij}=0$ </tex-math></inline-formula> otherwise. The <inline-formula> <tex-math notation="LaTeX">$S$ </tex-math></inline-formula>-eigenvalues of <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> are the eigenvalues of its ISI matrix <inline-formula> <tex-math notation="LaTeX">$S(G)$ </tex-math></inline-formula>. Recently, the notion of inverse sum indeg (henceforth, ISI) energy of graphs is introduced and is defined by <inline-formula> <tex-math notation="LaTeX">$\sum \limits _{i=1}^{n}|\tau _{i}|$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$\tau _{i}$ </tex-math></inline-formula> are the <inline-formula> <tex-math notation="LaTeX">$S$ </tex-math></inline-formula>-eigenvalues. We give ISI energy formula of some graph classes. We also obtain some bounds for ISI energy of graphs. In the end, we give some noncospectral equienergetic graphs with respect to inverse sum indeg energy.

[1]  Jose Maria Sigarreta,et al.  Spectral properties of geometric-arithmetic index , 2016, Appl. Math. Comput..

[2]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[3]  D. Vukicevic,et al.  Bond Additive Modeling 2. Mathematical Properties of Max-min Rodeg Index , 2010 .

[4]  C. A. Coulson,et al.  On the calculation of the energy in unsaturated hydrocarbon molecules , 1940, Mathematical Proceedings of the Cambridge Philosophical Society.

[5]  Kinkar Chandra Das,et al.  On spectral radius and energy of extended adjacency matrix of graphs , 2017, Appl. Math. Comput..

[6]  I. Gutman,et al.  Randic Spectral Radius and Randic Energy , 2010 .

[7]  I. Gutman,et al.  On Randić energy , 2014 .

[8]  R. Balakrishnan The energy of a graph , 2004 .

[9]  I. Gutman,et al.  Randic Matrix and Randic Energy , 2010 .

[10]  Emina I. Milovanovic,et al.  Upper bounds for some graph energies , 2016, Appl. Math. Comput..

[11]  I. Gutman,et al.  Degree-based energies of graphs , 2018, Linear Algebra and its Applications.

[12]  Dragan Stevanovic,et al.  On the inverse sum indeg index , 2015, Discret. Appl. Math..

[13]  K. Pattabiraman,et al.  Inverse sum indeg index of graphs , 2018, AKCE Int. J. Graphs Comb..

[14]  Ernesto Estrada The ABC Matrix , 2016, Journal of Mathematical Chemistry.

[15]  M. Ghorbani,et al.  On the eigenvalues of some matrices based on vertex degree , 2018 .

[16]  Laura Buggy The Energy of Graphs , 2010 .

[17]  K. N. Prakasha,et al.  Symmetric Division Deg Energy of a Graph , 2017 .

[18]  B. Devadas Acharya,et al.  EQUIENERGETIC GRAPHS , 2003 .

[19]  D. Vukicevic,et al.  Bond Additive Modeling 1. Adriatic Indices , 2010 .

[20]  D. S. Revankar,et al.  • NOTE ON THE BOUNDS FOR THE DEGREE SUM ENERGY OF A GRAPH, DEGREE SUM ENERGY OF A COMMON NEIGHBORHOOD GRAPH AND TERMINAL DISTANCE ENERGY OF A GRAPH , 2016 .

[21]  Willem H. Haemers,et al.  Spectra of Graphs , 2011 .

[22]  ON THE HARMONIC ENERGY AND THE HARMONIC ESTRADA INDEX OF GRAPHS , 2018 .

[23]  Shariefuddin Pirzada,et al.  On equienergetic signed graphs , 2015, Discret. Appl. Math..

[24]  Bo Zhou,et al.  On sum-connectivity matrix and sum-connectivity energy of (molecular) graphs. , 2010, Acta chimica Slovenica.

[25]  H. Kober On the arithmetic and geometric means and on Hölder’s inequality , 1958 .