Recent Results on Covering Problems

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers.

[1]  Henk C. A. van Tilborg,et al.  On the covering radius of binary, linear codes meeting the Griesmer bound , 1985, IEEE Trans. Inf. Theory.

[2]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[3]  Eugene R. Rodemich Coverings by rook domains , 1970 .

[4]  Harold F. Mattson,et al.  An improved upper bound on covering radius , 1984, AAECC.

[5]  Heeralal Janwa,et al.  Covering Radii of Even Subcodes of t-dense Codes , 1985, AAECC.

[6]  N. J. A. Sloane A new approach to the covering radius of codes , 1986, J. Comb. Theory, Ser. A.

[7]  Gérard D. Cohen,et al.  Covering radius - Survey and recent results , 1985, IEEE Trans. Inf. Theory.

[8]  N. J. A. Sloane,et al.  The covering radius of cyclic codes of length up to 31 , 1985, IEEE Trans. Inf. Theory.

[9]  Wende Chen,et al.  New lower bounds for binary covering codes , 1988 .

[10]  N. Sloane,et al.  On the covering radius problem for codes I. bounds on normalized covering radius , 1987 .

[11]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[12]  Gerhard J. M. van Wee,et al.  Improved sphere bounds on the coveting radius of codes , 1988, IEEE Trans. Inf. Theory.

[13]  N. J. A. Sloane,et al.  Further results on the covering radius of codes , 1986, IEEE Trans. Inf. Theory.

[14]  Ewald W. Weber On the Football Pool Problem for 6 Matches: A New Upper Bound , 1983, J. Comb. Theory, Ser. A.

[15]  L. T. Wille The football pool problem for 6 matches: A new upper bound obtained by simulated annealing , 1987, J. Comb. Theory, Ser. A.

[16]  Michael J. Adams,et al.  Subcodes and covering radius , 1986, IEEE Trans. Inf. Theory.

[17]  Heeralal Janwa,et al.  Some new upper bounds on the covering radius of binary linear codes , 1989, IEEE Trans. Inf. Theory.

[18]  J. H. van Lint,et al.  The football pool problem for 5 matches , 1967 .

[19]  Ehl Emile Aarts,et al.  Statistical cooling : a general approach to combinatorial optimization problems , 1985 .

[20]  N. J. A. Sloane,et al.  Inequalities for covering codes , 1988, IEEE Trans. Inf. Theory.

[21]  Clement W. H. Lam,et al.  More Coverings by Rook Domains , 1984, J. Comb. Theory, Ser. A.

[22]  N. J. A. Sloane,et al.  On the covering radius of codes , 1985, IEEE Trans. Inf. Theory.

[23]  Iiro Honkala,et al.  A new construction for covering codes , 1988, IEEE Trans. Inf. Theory.

[24]  Juriaan Simonis,et al.  The minimal covering radius t[15, 6] of a six-dimensional binary linear code of length 15 is equal to 4 , 1988, IEEE Trans. Inf. Theory.

[25]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[26]  J. H. van Lint,et al.  A covering problem , 1970 .

[27]  Hiram Fernandes,et al.  The Football Pool Problem for 7 and 8 Matches , 1983, J. Comb. Theory, Ser. A.

[28]  Richard M. Wilson,et al.  Short codes with a given coveting radius , 1989, IEEE Trans. Inf. Theory.

[29]  Emile H. L. Aarts,et al.  New upper bounds for the football pool problem for 6, 7, and 8 matches , 1989, J. Comb. Theory, Ser. A.

[30]  Joel H. Spencer,et al.  Explicit codes with low covering radius , 1988, IEEE Trans. Inf. Theory.