A multigrid optimization algorithm for the numerical solution of quasilinear variational inequalities involving the p-Laplacian
暂无分享,去创建一个
[1] R. Kornhuber. Monotone multigrid methods for elliptic variational inequalities I , 1994 .
[2] Zhenjiang You,et al. Application of the augmented Lagrangian method to steady pipe flows of Bingham, Casson and Herschel-Bulkley fluids , 2005 .
[3] Rodolfo Bermejo,et al. A Multigrid Algorithm for the p-Laplacian , 1999, SIAM J. Sci. Comput..
[4] Raja R. Huilgol,et al. Fluid Mechanics of Viscoplasticity , 2015 .
[5] John W. Barrett,et al. Finite element approximation of the p-Laplacian , 1993 .
[6] Ralf Kornhuber,et al. On constrained Newton linearization and multigrid for variational inequalities , 2002, Numerische Mathematik.
[7] D. Brandt,et al. Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .
[8] S. Scholtes. Introduction to Piecewise Differentiable Equations , 2012 .
[9] S. Nash. A multigrid approach to discretized optimization problems , 2000 .
[10] R. Glowinski,et al. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .
[11] Mark S. Gockenbach,et al. Understanding and implementing the finite element method , 1987 .
[12] W. Walawender,et al. An approximate Casson fluid model for tube flow of blood. , 1975, Biorheology.
[13] R. P. Chhabra,et al. Non-Newtonian Flow and Applied Rheology: Engineering Applications , 2008 .
[14] Sergio González Andrade,et al. A preconditioned descent algorithm for variational inequalities of the second kind involving the p-Laplacian operator , 2015, Comput. Optim. Appl..
[15] Xiaojun Chen,et al. Smoothing Methods and Semismooth Methods for Nondifferentiable Operator Equations , 2000, SIAM J. Numer. Anal..
[16] John W. Barrett,et al. A further remark on the regularity of the solutions of the p -Laplacian and its applications to their finite element approximations , 1993 .
[17] Stephen G. Nash,et al. Model Problems for the Multigrid Optimization of Systems Governed by Differential Equations , 2005, SIAM J. Sci. Comput..
[18] J. Lions,et al. Inequalities in mechanics and physics , 1976 .
[19] Ruo Li,et al. Preconditioned Descent Algorithms for p-Laplacian , 2007, J. Sci. Comput..
[20] John E. Dennis,et al. Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.
[21] Oliver Lass,et al. Implementation and analysis of multigrid schemes with finite elements for elliptic optimal control problems , 2009, Computing.
[22] Ivan P. Gavrilyuk,et al. Lagrange multiplier approach to variational problems and applications , 2010, Math. Comput..
[23] M. Giaquinta,et al. Mathematical Analysis: An Introduction to Functions of Several Variables , 2004 .
[24] Georg Stadler,et al. Solution of Nonlinear Stokes Equations Discretized By High-Order Finite Elements on Nonconforming and Anisotropic Meshes, with Application to Ice Sheet Dynamics , 2014, SIAM J. Sci. Comput..
[25] Alfio Borzì,et al. Multigrid optimization methods for linear and bilinear elliptic optimal control problems , 2008, Computing.
[26] Kazufumi Ito,et al. The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..
[27] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[28] R. Kornhuber. Monotone multigrid methods for elliptic variational inequalities II , 1996 .
[29] Alfio Borzì. On the convergence of the MG/OPT method , 2005 .