Bacterial phylogeny based on 16S and 23S rRNA sequence analysis.

Molecular phylogeny increasingly supports the understanding of organismal relationships and provides the basis for the classification of microorganisms according to their natural affiliations. Comparative sequence analysis of ribosomal RNAs or the corresponding genes currently is the most widely used approach for the reconstruction of microbial phylogeny. The highly and less conserved primary and higher order structure elements of rRNAs document the history of microbial evolution and are informative for definite phylogenetic levels. An optimal alignment of the primary structures and a careful data selection are prerequisites for reliable phylogenetic conclusions. rRNA based phylogenetic trees can be reconstructed and the significance of their topologies evaluated by applying distance, maximum parsimony and maximum likelihood methods of phylogeny inference in comparison, and by fortuitous or directed resampling of the data set. Phylogenetic trees based on almost equivalent data sets of bacterial 23S and 16S rRNAs are in good agreement and their overall topologies are supported by alternative phylogenetic markers such as elongation factors and ATPase subunits. Besides their phylogenetic information content, the differently conserved primary structure regions of rRNAs provide target sites for specific hybridization probes which have been proven to be powerful tools for the identification of microbes on the basis of their phylogenetic relationships.

[1]  K. Schleifer,et al.  Cloning and sequencing of the gene encoding the beta subunit of the sodium ion translocating ATP synthase of Propionigenium modestum , 1988 .

[2]  G. Olsen,et al.  Ribosomal RNA: a key to phylogeny , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[3]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[4]  George E. Fox,et al.  Comparative Cataloging of 16S Ribosomal Ribonucleic Acid: Molecular Approach to Procaryotic Systematics , 1977 .

[5]  R. Cedergren,et al.  The sequence of the gene encoding elongation factor Tu from Chlamydia trachomatis compared with those of other organisms. , 1992, Gene.

[6]  L. Pauling,et al.  Molecules as documents of evolutionary history. , 1965, Journal of theoretical biology.

[7]  L. Jin,et al.  Limitations of the evolutionary parsimony method of phylogenetic analysis. , 1990, Molecular biology and evolution.

[8]  K. Schleifer,et al.  The 23S ribosomal RNA higher-order structure of Pseudomonas cepacia and other prokaryotes. , 1989, European journal of biochemistry.

[9]  J. Felsenstein Numerical Methods for Inferring Evolutionary Trees , 1982, The Quarterly Review of Biology.

[10]  S. Osawa,et al.  Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[11]  K. Schleifer,et al.  Phylogenetic Diversity and Identification of Nonculturable Magnetotactic Bacteria , 1992 .

[12]  Masasuke Yoshida,et al.  Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[13]  K. Schleifer,et al.  Beta-subunit of ATP-synthase: a useful marker for studying the phylogenetic relationship of eubacteria. , 1988, Journal of general microbiology.

[14]  M. Kimura The Neutral Theory of Molecular Evolution: Introduction , 1983 .

[15]  J. Felsenstein Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .

[16]  Ross A. Overbeek,et al.  The ribosomal database project , 1992, Nucleic Acids Res..

[17]  K. Schleifer,et al.  A 16S rRNA targeted oligonucleotide probe for the differentiation of Staphylococcus haemolyticus from S. warneri and S. hominis , 1992 .

[18]  K. Schleifer,et al.  Nucleotide sequence of the gene coding for the elongation factor Tu from the extremely thermophilic eubacterium Thermotoga maritima. , 1989, FEMS microbiology letters.

[19]  J. Neefs,et al.  Compilation of small ribosomal subunit RNA sequences. , 1990, Nucleic acids research.

[20]  J. V. Van Etten,et al.  A phylogenetic analysis of the mycoplasmas: basis for their classification , 1989, Journal of bacteriology.

[21]  S. T. Cowan A dictionary of micro-bial taxonomic usage. , 1968 .

[22]  M. Skurnik,et al.  Intervening sequences (IVSs) in the 23S ribosomal RNA genes of pathogenic Yersinia enterocolitica strains. The IVSs in Y enterocolitica and Salmonella typhimurium have a common origin , 1991, Molecular microbiology.

[23]  W. Fitch,et al.  Construction of phylogenetic trees. , 1967, Science.

[24]  D A Stahl,et al.  Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology , 1990, Journal of bacteriology.

[25]  H. Noller,et al.  Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. , 1981, Journal of molecular biology.

[26]  K. Schleifer,et al.  Identification of lactococci and enterococci by colony hybridization with 23S rRNA-targeted oligonucleotide probes , 1990, Applied and environmental microbiology.

[27]  K. Schleifer,et al.  Identification in situ and phylogeny of uncultured bacterial endosymbionts , 1991, Nature.

[28]  N. Pace,et al.  The excision of intervening sequences from salmonella 23S ribosomal RNA , 1990, Cell.

[29]  J. Felsenstein Phylogenies from molecular sequences: inference and reliability. , 1988, Annual review of genetics.

[30]  K. Schleifer,et al.  Identification and in situ detection of individual bacterial cells , 1992 .

[31]  W. Fitch Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology , 1971 .

[32]  K. Schleifer,et al.  Subunit β of Adenosine Triphosphate Synthase of Pectinatus frisingensis and Lactobacillus casei , 1992 .

[33]  K. Schleifer,et al.  Phylogenetic Oligodeoxynucleotide Probes for the Major Subclasses of Proteobacteria: Problems and Solutions , 1992 .

[34]  G. Olsen,et al.  A brief note concerning archaebacterial phylogeny. , 1989, Canadian journal of microbiology.

[35]  K. Schleifer,et al.  Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23S rRNA genes. , 1992, Journal of general microbiology.

[36]  N. Larsen,et al.  Higher order interactions in 23s rRNA. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[37]  M. Kimura,et al.  The neutral theory of molecular evolution. , 1983, Scientific American.

[38]  W. Ludwig,et al.  A novel eubacterial phylum: comparative nucleotide sequence analysis of a tuf-gene of Flexistipes sinusarabici. , 1991, FEMS microbiology letters.

[39]  C. B. V. Niel,et al.  The classification and natural relationships of bacteria. , 1946 .

[40]  T. Jukes CHAPTER 24 – Evolution of Protein Molecules , 1969 .

[41]  M. Doudoroff,et al.  The Microbial World , 1977 .

[42]  R. Stanier,et al.  The Main Outlines of Bacterial Classification , 1941, Journal of Bacteriology.

[43]  K. Schleifer,et al.  Species Specific Oligonucleotide Probe for the Identification of Streptococcus thermophilus , 1992 .

[44]  I. Szilágyi,et al.  Ornithine carbamoyltransferase of Streptomyces fradiae: purification and properties , 1987 .

[45]  C. Woese,et al.  Phylogenetic structure of the prokaryotic domain: The primary kingdoms , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[46]  M. Weizenegger,et al.  Complete 23S Ribosomal RNA Sequences of Gram-positive Bacteria with a Low DNA G+C Content , 1992 .

[47]  F J Ayala,et al.  Estimation and interpretation of genetic distance in empirical studies. , 1982, Genetical research.

[48]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[49]  S. Kaplan,et al.  Localization and structural analysis of the ribosomal RNA operons of Rhodobacter sphaeroides. , 1990, Nucleic acids research.

[50]  G. Olsen,et al.  Earliest phylogenetic branchings: comparing rRNA-based evolutionary trees inferred with various techniques. , 1987, Cold Spring Harbor symposia on quantitative biology.

[51]  Sp Lapage,et al.  International Code of Nomenclature of Bacteria , 1992 .