Complex networks approach to modeling online social systems. The emergence of computational social science

[eng] This thesis is devoted to quantitative description, analysis, and modeling of complex social systems in the form of online social networks. Statistical patterns of the systems under study are unveiled and interpreted using concepts and methods of network science, social network analysis, and data mining. A long-term promise of this research is that predicting the behavior of complex techno-social systems will be possible in a way similar to contemporary weather forecasting, using statistical inference and computational modeling based on the advancements in understanding and knowledge of techno-social systems. Although the subject of this study are humans, as opposed to atoms or molecules in statistical physics, the availability of extremely large datasets on human behavior permits the use of tools and techniques of statistical physics. This dissertation deals with large datasets from online social networks, measures statistical patterns of social behavior, and develops quantitative methods, models, and metrics for complex techno-social systems

[1]  Andrea Lancichinetti,et al.  Detecting the overlapping and hierarchical community structure in complex networks , 2008, 0802.1218.

[2]  Matthew J. Salganik,et al.  Experimental Study of Inequality and Unpredictability in an Artificial Cultural Market , 2006, Science.

[3]  Krishna P. Gummadi,et al.  On word-of-mouth based discovery of the web , 2011, IMC '11.

[4]  Timothy W. Finin,et al.  Why we twitter: understanding microblogging usage and communities , 2007, WebKDD/SNA-KDD '07.

[5]  George Kingsley Zipf,et al.  Human Behaviour and the Principle of Least Effort: an Introduction to Human Ecology , 2012 .

[6]  M. Newman,et al.  Why social networks are different from other types of networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Cameron Marlow,et al.  A 61-million-person experiment in social influence and political mobilization , 2012, Nature.

[8]  Lada A. Adamic,et al.  The role of social networks in information diffusion , 2012, WWW.

[9]  YangXiaoyuan,et al.  The little engine(s) that could , 2010 .

[10]  Hernán D. Rozenfeld,et al.  Laws of population growth , 2008, Proceedings of the National Academy of Sciences.

[11]  S. Fortunato,et al.  Resolution limit in community detection , 2006, Proceedings of the National Academy of Sciences.

[12]  P. Samuelson The Pure Theory of Public Expanditure , 1954 .

[13]  V. Eguíluz,et al.  Highly clustered scale-free networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[15]  F. Harary,et al.  The cohesiveness of blocks in social networks: Node connectivity and conditional density , 2001 .

[16]  Santo Fortunato,et al.  Finding Statistically Significant Communities in Networks , 2010, PloS one.

[17]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[18]  B. Uzzi,et al.  The Sources and Consequences of Embeddedness for the Economic Performance of Organizations: The Network Effect , 1996 .

[19]  G. B. A. Barab'asi Competition and multiscaling in evolving networks , 2000, cond-mat/0011029.

[20]  S. N. Dorogovtsev,et al.  Structure of growing networks with preferential linking. , 2000, Physical review letters.

[21]  Robin I. M. Dunbar Neocortex size as a constraint on group size in primates , 1992 .

[22]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[23]  Esteban Moro,et al.  Social Features of Online Networks: The Strength of Intermediary Ties in Online Social Media , 2011, PloS one.

[24]  Hod Lipson,et al.  The evolutionary origins of modularity , 2012, Proceedings of the Royal Society B: Biological Sciences.

[25]  Víctor M. Eguíluz,et al.  Entangling Mobility and Interactions in Social Media , 2013, PloS one.

[26]  Peter Grassberger,et al.  Clustering Drives Assortativity and Community Structure in Ensembles of Networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  X. Gabaix Zipf's Law for Cities: An Explanation , 1999 .

[28]  Eric Bonabeau,et al.  Agent-based modeling: Methods and techniques for simulating human systems , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[29]  David Lazer,et al.  Inferring friendship network structure by using mobile phone data , 2009, Proceedings of the National Academy of Sciences.

[30]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[31]  A. Vespignani Predicting the Behavior of Techno-Social Systems , 2009, Science.

[32]  Jure Leskovec,et al.  Microscopic evolution of social networks , 2008, KDD.

[33]  Michael Szell,et al.  Multirelational organization of large-scale social networks in an online world , 2010, Proceedings of the National Academy of Sciences.

[34]  Alessandro Vespignani,et al.  Multiscale mobility networks and the spatial spreading of infectious diseases , 2009, Proceedings of the National Academy of Sciences.

[35]  A. J. Morales,et al.  Characterizing and modeling an electoral campaign in the context of Twitter: 2011 Spanish Presidential Election as a case study , 2012, Chaos.

[36]  Jon Kleinberg,et al.  Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter , 2011, WWW.

[37]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[38]  Maxi San Miguel,et al.  A measure of individual role in collective dynamics , 2010, Scientific Reports.

[39]  Péter Csermely,et al.  Weak links : stabilizers of complex systems from proteins to social networks , 2006 .

[40]  Ben Y. Zhao,et al.  User interactions in social networks and their implications , 2009, EuroSys '09.

[41]  M E J Newman Assortative mixing in networks. , 2002, Physical review letters.

[42]  G. Parisi Brownian motion , 2005, Nature.

[43]  Barbara Poblete,et al.  Twitter under crisis: can we trust what we RT? , 2010, SOMA '10.

[44]  Barry Wellman,et al.  Geography of Twitter networks , 2012, Soc. Networks.

[45]  Ajay Mehra The Development of Social Network Analysis: A Study in the Sociology of Science , 2005 .

[46]  Albert-László Barabási,et al.  The origin of bursts and heavy tails in human dynamics , 2005, Nature.

[47]  Shlomo Havlin,et al.  How people interact in evolving online affiliation networks , 2011, ArXiv.

[48]  Ingmar Weber,et al.  Studying inter-national mobility through IP geolocation , 2013, WSDM.

[49]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[50]  Daniele Quercia,et al.  Tracking "gross community happiness" from tweets , 2012, CSCW.

[51]  S. N. Dorogovtsev,et al.  Pseudofractal scale-free web. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  Dominique Cardon,et al.  Thematic and Social Indicators for Flickr Groups , 2008, ICWSM.

[53]  R. Pastor-Satorras,et al.  Class of correlated random networks with hidden variables. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  Krishna P. Gummadi,et al.  Growth of the flickr social network , 2008, WOSN '08.

[55]  Beom Jun Kim,et al.  Growing scale-free networks with tunable clustering. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  Huan Liu,et al.  Group Profiling for Understanding Social Structures , 2011, TIST.

[57]  Filippo Menczer,et al.  Partisan asymmetries in online political activity , 2012, EPJ Data Science.

[58]  Réka Albert,et al.  Near linear time algorithm to detect community structures in large-scale networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  S. Riger,et al.  Community ties: Patterns of attachment and social interaction in urban neighborhoods , 1981 .

[60]  Sonja Utz,et al.  Distributive Justice in Common-Bond and Common-Identity Groups , 2002 .

[61]  J. V. Dijk The Network Society: Social Aspects of New Media , 2005 .

[62]  Rossano Schifanella,et al.  Friendship prediction and homophily in social media , 2012, TWEB.

[63]  Petter Holme,et al.  Predictability of population displacement after the 2010 Haiti earthquake , 2012, Proceedings of the National Academy of Sciences.

[64]  Albert-László Barabási,et al.  Quantifying Long-Term Scientific Impact , 2013, Science.

[65]  Santo Fortunato,et al.  Characterizing and modeling the dynamics of online popularity , 2010, Physical review letters.

[66]  D. Wegner Transactive Memory: A Contemporary Analysis of the Group Mind , 1987 .

[67]  S. Havlin,et al.  Scaling laws of human interaction activity , 2009, Proceedings of the National Academy of Sciences.

[68]  Jure Leskovec,et al.  Friendship and mobility: user movement in location-based social networks , 2011, KDD.

[69]  Didier Sornette,et al.  Theory of Zipf's Law and Beyond , 2009 .

[70]  Ian A. Meinertzhagen,et al.  Wiring Economy and Volume Exclusion Determine Neuronal Placement in the Drosophila Brain , 2011, Current Biology.

[71]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[72]  M.,et al.  Sense of community: A definition and theory , 1986 .

[73]  Jukka-Pekka Onnela,et al.  Community Structure in Time-Dependent, Multiscale, and Multiplex Networks , 2009, Science.

[74]  Neil J. Hurley,et al.  Detecting Highly Overlapping Communities with Model-Based Overlapping Seed Expansion , 2010, 2010 International Conference on Advances in Social Networks Analysis and Mining.

[75]  Daniele Quercia,et al.  Our Twitter Profiles, Our Selves: Predicting Personality with Twitter , 2011, 2011 IEEE Third Int'l Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Int'l Conference on Social Computing.

[76]  Christian Schneider,et al.  Spatiotemporal Patterns of Urban Human Mobility , 2012, Journal of Statistical Physics.

[77]  S. Kiesler,et al.  Applying Common Identity and Bond Theory to Design of Online Communities , 2007 .

[78]  Lars Backstrom,et al.  The Anatomy of the Facebook Social Graph , 2011, ArXiv.

[79]  Henry A. Kautz,et al.  Finding your friends and following them to where you are , 2012, WSDM '12.

[80]  M. Newman Power laws, Pareto distributions and Zipf's law , 2005 .

[81]  Pablo Rodriguez,et al.  Explore what-if scenarios with SONG: Social Network Write Generator , 2011, ArXiv.

[82]  R. Guimerà,et al.  Modularity from fluctuations in random graphs and complex networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[83]  Jonathon N. Cummings,et al.  The quality of online social relationships , 2002, CACM.

[84]  Edward A. Bender,et al.  The Asymptotic Number of Labeled Graphs with Given Degree Sequences , 1978, J. Comb. Theory A.

[85]  Wolfgang Kellerer,et al.  Outtweeting the Twitterers - Predicting Information Cascades in Microblogs , 2010, WOSN.

[86]  J. M. Pujol,et al.  Scaling Online Social Networks without Pains , 2009 .

[87]  Bernardo A. Huberman,et al.  Trends in Social Media: Persistence and Decay , 2011, ICWSM.

[88]  Lada A. Adamic,et al.  Power-Law Distribution of the World Wide Web , 2000, Science.

[89]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[90]  Reka Albert,et al.  Mean-field theory for scale-free random networks , 1999 .

[91]  Friedrich-Schiller-Universitat Jena Common Bond and Common Identity Groups on the Internet: Attachment and Normative Behavior in On-Topic and Off-Topic Chats , 2002 .

[92]  Neo D. Martinez,et al.  Network structure and biodiversity loss in food webs: robustness increases with connectance , 2002, Ecology Letters.

[93]  F. Radicchi,et al.  Statistical significance of communities in networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[94]  Lars Backstrom,et al.  Structural diversity in social contagion , 2012, Proceedings of the National Academy of Sciences.

[95]  P. V. Marsden,et al.  Measuring Tie Strength , 1984 .

[96]  Albert-László Barabási,et al.  Understanding the Spreading Patterns of Mobile Phone Viruses , 2009, Science.

[97]  Víctor M. Eguíluz,et al.  Dynamics in online social networks , 2012, ArXiv.

[98]  Luis Mario Floría,et al.  Evolution of Cooperation in Multiplex Networks , 2012, Scientific Reports.

[99]  Lada A. Adamic,et al.  Internet: Growth dynamics of the World-Wide Web , 1999, Nature.

[100]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[101]  D. Lazer Networks in Political Science: Back to the Future , 2011, PS: Political Science & Politics.

[102]  T. Geisel,et al.  The scaling laws of human travel , 2006, Nature.

[103]  P. Olivier,et al.  Socio-Geography of Human Mobility: A Study Using Longitudinal Mobile Phone Data , 2012, PloS one.

[104]  Dario Taraborelli,et al.  Viable Web Communities: Two Case Studies , 2011 .

[105]  A. Rapoport Contribution to the theory of random and biased nets , 1957 .

[106]  Cecilia Mascolo,et al.  The Length of Bridge Ties: Structural and Geographic Properties of Online Social Interactions , 2012, ICWSM.

[107]  G. Miller Sociology. Social scientists wade into the tweet stream. , 2011, Science.

[108]  Benjamin H. Good,et al.  Performance of modularity maximization in practical contexts. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[109]  Albert-László Barabási,et al.  Limits of Predictability in Human Mobility , 2010, Science.

[110]  Shilpa Chakravartula,et al.  Complex Networks: Structure and Dynamics , 2014 .

[111]  Yamir Moreno,et al.  Structural and Dynamical Patterns on Online Social Networks: The Spanish May 15th Movement as a Case Study , 2011, PloS one.

[112]  Jim Giles,et al.  Computational social science: Making the links , 2012, Nature.

[113]  Víctor M. Eguíluz,et al.  Distinguishing topical and social groups based on common identity and bond theory , 2013, WSDM.

[114]  Christopher J. Fariss,et al.  Inferring Tie Strength from Online Directed Behavior , 2013, PloS one.

[115]  M. Newman,et al.  Statistical mechanics of networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[116]  Roma,et al.  Fitness model for the Italian interbank money market. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[117]  Pietro Liò,et al.  Towards real-time community detection in large networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[118]  Ciro Cattuto,et al.  What's in a crowd? Analysis of face-to-face behavioral networks , 2010, Journal of theoretical biology.

[119]  H. Simon,et al.  ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS , 1955 .

[120]  Jure Leskovec,et al.  Predicting positive and negative links in online social networks , 2010, WWW '10.

[121]  V. Eguíluz,et al.  Growing scale-free networks with small-world behavior. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[122]  G. Miritello Temporal Patterns of Communication in Social Networks , 2013 .

[123]  R. Guimerà,et al.  Functional cartography of complex metabolic networks , 2005, Nature.

[124]  Hawoong Jeong,et al.  Comparison of online social relations in volume vs interaction: a case study of cyworld , 2008, IMC '08.

[125]  Emilio Ferrara,et al.  A large-scale community structure analysis in Facebook , 2011, EPJ Data Science.

[126]  M. Macy,et al.  FROM FACTORS TO ACTORS: Computational Sociology and Agent-Based Modeling , 2002 .

[127]  Daniele Quercia,et al.  The personality of popular facebook users , 2012, CSCW.

[128]  Marta C González,et al.  System of mobile agents to model social networks. , 2006, Physical review letters.

[129]  Alessandro Vespignani,et al.  Modeling Users' Activity on Twitter Networks: Validation of Dunbar's Number , 2011, PloS one.

[130]  Gueorgi Kossinets,et al.  Empirical Analysis of an Evolving Social Network , 2006, Science.

[131]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[132]  Marc Barthelemy,et al.  Spatial Networks , 2010, Encyclopedia of Social Network Analysis and Mining.

[133]  M. McPherson,et al.  Birds of a Feather: Homophily in Social Networks , 2001 .

[134]  Jon M. Kleinberg,et al.  The Directed Closure Process in Hybrid Social-Information Networks, with an Analysis of Link Formation on Twitter , 2010, ICWSM.

[135]  Charles Anderson,et al.  The end of theory: The data deluge makes the scientific method obsolete , 2008 .

[136]  Daniel Gatica-Perez,et al.  Analyzing Flickr groups , 2008, CIVR '08.

[137]  Jure Leskovec,et al.  Defining and evaluating network communities based on ground-truth , 2012, Knowledge and Information Systems.

[138]  M. Newman,et al.  Mixing patterns in networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[139]  A-L Barabási,et al.  Structure and tie strengths in mobile communication networks , 2006, Proceedings of the National Academy of Sciences.

[140]  Claudio J. Tessone,et al.  Sustainable growth in complex networks , 2010, 1007.1330.

[141]  Sara B. Soderstrom,et al.  Dynamics of Dyads in Social Networks: Assortative, Relational, and Proximity Mechanisms , 2010 .

[142]  Jacob Ratkiewicz,et al.  Truthy: mapping the spread of astroturf in microblog streams , 2010, WWW.

[143]  Lars Backstrom,et al.  Find me if you can: improving geographical prediction with social and spatial proximity , 2010, WWW '10.

[144]  Dino Pedreschi,et al.  A Complexity Science Perspective on Human Mobility , 2013, Mobility Data.

[145]  Mark S. Granovetter The Strength of Weak Ties , 1973, American Journal of Sociology.

[146]  Yan Zhao,et al.  Analyzing Actors and Their Discussion Topics by Semantic Social Network Analysis , 2006, Tenth International Conference on Information Visualisation (IV'06).

[147]  D. Watts A twenty-first century science , 2007, Nature.

[148]  Eric Gilbert,et al.  Predicting tie strength with social media , 2009, CHI.

[149]  T. Geisel,et al.  Forecast and control of epidemics in a globalized world. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[150]  Jure Leskovec,et al.  Meme-tracking and the dynamics of the news cycle , 2009, KDD.

[151]  Krishna P. Gummadi,et al.  Measurement and analysis of online social networks , 2007, IMC '07.

[152]  D. Chklovskii,et al.  Wiring optimization can relate neuronal structure and function. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[153]  Jasmine Novak,et al.  Geographic routing in social networks , 2005, Proc. Natl. Acad. Sci. USA.

[154]  Dino Pedreschi,et al.  Human mobility, social ties, and link prediction , 2011, KDD.

[155]  Diego Garlaschelli,et al.  Fitness-dependent topological properties of the world trade web. , 2004, Physical review letters.

[156]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[157]  S. Bornholdt,et al.  World Wide Web scaling exponent from Simon's 1955 model. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[158]  Jon M. Kleinberg,et al.  Group formation in large social networks: membership, growth, and evolution , 2006, KDD '06.

[159]  Danyel Fisher,et al.  Visualizing the Signatures of Social Roles in Online Discussion Groups , 2007, J. Soc. Struct..

[160]  L. Miller,et al.  Self-disclosure and liking: a meta-analytic review. , 1994, Psychological bulletin.

[161]  Daniel J. Brass,et al.  Network Analysis in the Social Sciences , 2009, Science.

[162]  Jure Leskovec,et al.  Planetary-scale views on a large instant-messaging network , 2008, WWW.

[163]  Manuel Cebrián,et al.  Limited communication capacity unveils strategies for human interaction , 2013, Scientific Reports.

[164]  David Lazer,et al.  Network Theory and Small Groups , 2004 .

[165]  Dan Cosley,et al.  Inferring social ties from geographic coincidences , 2010, Proceedings of the National Academy of Sciences.

[166]  Albert-László Barabási,et al.  Evolution of Networks: From Biological Nets to the Internet and WWW , 2004 .

[167]  Martin Rosvall,et al.  Maps of random walks on complex networks reveal community structure , 2007, Proceedings of the National Academy of Sciences.

[168]  J. Marchal Cours d'economie politique , 1950 .

[169]  Cecilia Mascolo,et al.  Socio-Spatial Properties of Online Location-Based Social Networks , 2011, ICWSM.

[170]  B. Söderberg General formalism for inhomogeneous random graphs. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[171]  J. Coleman,et al.  Social Capital in the Creation of Human Capital , 1988, American Journal of Sociology.

[172]  D. R. White,et al.  Structural cohesion and embeddedness: A hierarchical concept of social groups , 2003 .

[173]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[174]  Stefan Siersdorfer,et al.  Developing metrics to characterize Flickr groups , 2011, J. Assoc. Inf. Sci. Technol..

[175]  Chaoming Song,et al.  Modelling the scaling properties of human mobility , 2010, 1010.0436.

[176]  Dan Cosley,et al.  Think different: increasing online community participation using uniqueness and group dissimilarity , 2004, CHI.

[177]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[178]  B. Wellman,et al.  Imagining Twitter as an Imagined Community , 2011 .

[179]  G. Cecchi,et al.  Scale-free brain functional networks. , 2003, Physical review letters.

[180]  K. Cook,et al.  Social Exchange Theory , 1989, Theoretical Sociology.

[181]  Tao Jia,et al.  An empirical study on human mobility and its agent-based modeling , 2012 .

[182]  Susan C. Herring,et al.  Beyond Microblogging: Conversation and Collaboration via Twitter , 2009, 2009 42nd Hawaii International Conference on System Sciences.

[183]  Marta C. González,et al.  A universal model for mobility and migration patterns , 2011, Nature.

[184]  A. Barabasi,et al.  Bose-Einstein condensation in complex networks. , 2000, Physical review letters.

[185]  Alessandro Vespignani,et al.  Epidemic spreading in scale-free networks. , 2000, Physical review letters.

[186]  Martin Rosvall,et al.  Multilevel Compression of Random Walks on Networks Reveals Hierarchical Organization in Large Integrated Systems , 2010, PloS one.

[187]  Filippo Menczer,et al.  Virality Prediction and Community Structure in Social Networks , 2013, Scientific Reports.

[188]  H WittenIan,et al.  The WEKA data mining software , 2009 .

[189]  C. T. Butts,et al.  Revisiting the Foundations of Network Analysis , 2009, Science.

[190]  Ravi Kumar,et al.  Preferential behavior in online groups , 2008, WSDM '08.

[191]  A. Barabasi,et al.  Evolution of the social network of scientific collaborations , 2001, cond-mat/0104162.

[192]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[193]  Seungyeop Han,et al.  Analysis of topological characteristics of huge online social networking services , 2007, WWW '07.

[194]  Mark S. Granovetter T H E S T R E N G T H O F WEAK TIES: A NETWORK THEORY REVISITED , 1983 .

[195]  J. Gillon,et al.  Group dynamics , 1996 .

[196]  A. Barabasi,et al.  Quantifying social group evolution , 2007, Nature.

[197]  Dimitrina S. Dimitrova,et al.  Computer Networks as Social Networks: Collaborative Work, Telework, and Virtual Community , 1996 .

[198]  A. Cho,et al.  Ourselves and our interactions: the ultimate physics problem? , 2009, Science.

[199]  Christopher M. Danforth,et al.  The Geography of Happiness: Connecting Twitter Sentiment and Expression, Demographics, and Objective Characteristics of Place , 2013, PloS one.

[200]  Santo Fortunato,et al.  Scale-free network growth by ranking. , 2006, Physical review letters.

[201]  Patricia E. Tweet Brokerage and Closure: An Introduction to Social Capital , 2006 .

[202]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[203]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[204]  Deborah A. Prentice,et al.  Asymmetries in Attachments to Groups and to their Members: Distinguishing between Common-Identity and Common-Bond Groups , 1994 .

[205]  Krishna P. Gummadi,et al.  Deep Twitter diving: exploring topical groups in microblogs at scale , 2014, CSCW.

[206]  M. Batty Generative social science: Studies in agent-based computational modeling , 2008 .

[207]  Alex Pentland,et al.  The predictability of consumer visitation patterns , 2010, Scientific Reports.

[208]  Vito Latora,et al.  Understanding mobility in a social petri dish , 2011, Scientific Reports.

[209]  Esteban Moro Egido,et al.  Affinity Paths and information diffusion in social networks , 2011, Soc. Networks.

[210]  John F. Padgett,et al.  Robust Action and the Rise of the Medici, 1400-1434 , 1993, American Journal of Sociology.

[211]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[212]  Lada A. Adamic,et al.  Computational Social Science , 2009, Science.

[213]  Ciro Cattuto,et al.  Dynamical classes of collective attention in twitter , 2011, WWW.

[214]  M. Macy,et al.  Complex Contagions and the Weakness of Long Ties1 , 2007, American Journal of Sociology.

[215]  Dirk Brockmann Statistical mechanics: The physics of where to go , 2010 .

[216]  Balazs Vedres,et al.  Structural Folds: Generative Disruption in Overlapping Groups1 , 2010, American Journal of Sociology.

[217]  John Gantz,et al.  The Digital Universe in 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East , 2012 .

[218]  Víctor M. Eguíluz,et al.  Heterogeneity shapes groups growth in social online communities , 2011, ArXiv.

[219]  Stanley Milgram,et al.  An Experimental Study of the Small World Problem , 1969 .

[220]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[221]  Krishna P. Gummadi,et al.  On the evolution of user interaction in Facebook , 2009, WOSN '09.

[222]  Robin I. M. Dunbar Social Brain Hypothesis , 1998, Encyclopedia of Evolutionary Psychological Science.

[223]  Duncan J. Watts,et al.  Who says what to whom on twitter , 2011, WWW.

[224]  G. Simmel The sociology of Georg Simmel , 1950 .

[225]  F. Heider The psychology of interpersonal relations , 1958 .

[226]  Dinh Q. Phung,et al.  Flickr hypergroups , 2009, ACM Multimedia.

[227]  Leonid E. Zhukov,et al.  Community Detection Algorithms , 2013 .

[228]  Leon Danon,et al.  Comparing community structure identification , 2005, cond-mat/0505245.

[229]  G. Zipf The P 1 P 2 D Hypothesis: On the Intercity Movement of Persons , 1946 .

[230]  Marián Boguñá,et al.  Tuning clustering in random networks with arbitrary degree distributions. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[231]  K. Kaski,et al.  A Model For Social Networks , 2006, physics/0601114.