Wildfire Smoke Particle Properties and Evolution, From Space-Based Multi-Angle Imaging II: The Williams Flats Fire during the FIREX-AQ Campaign

[1]  David J. Diner,et al.  Wildfire smoke injection heights: Two perspectives from space , 2008 .

[2]  Y. H. Zhang,et al.  New particle formation in the presence of a strong biomass burning episode at a downwind rural site in PRD, China , 2013 .

[3]  L. Radke,et al.  Cloud Condensation Nuclei from a Simulated Forest Fire , 1969, Science.

[4]  N. C. Hsu,et al.  AERONET‐Based Nonspherical Dust Optical Models and Effects on the VIIRS Deep Blue/SOAR Over Water Aerosol Product , 2017, Journal of geophysical research. Atmospheres : JGR.

[5]  J. Hansen,et al.  Radiative forcing and climate response , 1997 .

[7]  K. Jucks,et al.  Planning, implementation, and scientific goals of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission , 2016 .

[8]  Alexander Smirnov,et al.  High aerosol optical depth biomass burning events: A comparison of optical properties for different source regions , 2003 .

[9]  Ralph A. Kahn,et al.  Sensitivity of multiangle imaging to the optical and microphysical properties of biomass burning aerosols , 2008 .

[10]  Alexander Smirnov,et al.  Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network , 2010 .

[11]  A. Robinson,et al.  Production of Secondary Organic Aerosol During Aging of Biomass Burning Smoke From Fresh Fuels and Its Relationship to VOC Precursors , 2019, Journal of Geophysical Research: Atmospheres.

[12]  Mark R. Schoeberl,et al.  Transport of smoke from Canadian forest fires to the surface near Washington, D.C.: Injection height, entrainment, and optical properties , 2004 .

[13]  Maria Val Martin,et al.  A Global Analysis of Wildfire Smoke Injection Heights Derived from Space-Based Multi-Angle Imaging , 2018, Remote. Sens..

[14]  R. Kahn,et al.  Distinguishing Remobilized Ash From Erupted Volcanic Plumes Using Space‐Borne Multiangle Imaging , 2017, Geophysical research letters.

[15]  R. Kahn,et al.  Karymsky volcano eruptive plume properties based on MISR multi-angle imagery, and volcanological implications. , 2018, Atmospheric chemistry and physics.

[16]  Ralph A. Kahn,et al.  MISR research-aerosol-algorithm refinements for dark water retrievals , 2014 .

[17]  B. DeAngelo,et al.  Bounding the role of black carbon in the climate system: A scientific assessment , 2013 .

[18]  S. Twomey,et al.  The Production of Cloud Nuclei by Cane Fires and the Effect on Cloud Droplet Concentration , 1967 .

[19]  Woogyung V. Kim,et al.  An overview of mesoscale aerosol processes, comparisons, and validation studies from DRAGON networks , 2017 .

[20]  R. Kahn,et al.  The Evolution of Icelandic Volcano Emissions, as Observed From Space in the Era of NASA's Earth Observing System (EOS) , 2020, Journal of Geophysical Research: Atmospheres.

[21]  P. Buseck,et al.  Formation and evolution of tar balls from northwestern US wildfires , 2018, Atmospheric Chemistry and Physics.

[22]  D. Koch,et al.  Black carbon semi-direct effects on cloud cover: review and synthesis , 2010 .

[23]  A. Virkkula Correction of the Calibration of the 3-wavelength Particle Soot Absorption Photometer (3λ PSAP) , 2010 .

[24]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[25]  Jian Wang,et al.  The time evolution of aerosol composition over the Mexico City plateau , 2007 .

[26]  D. L. Nelson,et al.  Smoke injection heights from fires in North America: analysis of 5 years of satellite observations , 2009 .

[27]  Barbara J. Gaitley,et al.  An analysis of global aerosol type as retrieved by MISR , 2015 .

[28]  M. Garay,et al.  Identification and Characterization of Dust Source Regions Across North Africa and the Middle East Using MISR Satellite Observations , 2018, Geophysical Research Letters.

[29]  Wayne C. Welch,et al.  Airborne high spectral resolution lidar for profiling aerosol optical properties. , 2008, Applied optics.

[30]  J. Ogren,et al.  Determining Aerosol Radiative Properties Using the TSI 3563 Integrating Nephelometer , 1998 .

[31]  Thomas W. Kirchstetter,et al.  Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon , 2004 .

[32]  Jian Wang,et al.  Spherical tarball particles form through rapid chemical and physical changes of organic matter in biomass-burning smoke , 2019, Proceedings of the National Academy of Sciences.

[33]  Ralph A. Kahn,et al.  The impact of MISR-derived injection height initialization on wildfire and volcanic plume dispersion in the HYSPLIT model , 2018, Atmospheric Measurement Techniques.

[34]  B. Samset,et al.  Aerosol Absorption: Progress Towards Global and Regional Constraints , 2018, Current Climate Change Reports.

[35]  J. Reid,et al.  Physical and optical properties of young smoke from individual biomass fires in Brazil , 1998 .

[36]  Hiren Jethva,et al.  Satellite-Based Evidence of Wavelength-Dependent Aerosol Absorption in Biomass Burning Smoke Inferred from Ozone Monitoring Instrument , 2011 .

[37]  David J. Diner,et al.  Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia , 2011 .

[38]  Qi Zhang,et al.  Regional Influence of Wildfires on Aerosol Chemistry in the Western US and Insights into Atmospheric Aging of Biomass Burning Organic Aerosol , 2016 .

[39]  Ralph A. Kahn,et al.  Eyjafjallajökull volcano plume particle-type characterization from space-based multi-angle imaging , 2012 .

[40]  A. Nenes,et al.  Scanning Mobility CCN Analysis—A Method for Fast Measurements of Size-Resolved CCN Distributions and Activation Kinetics , 2010 .

[41]  Xingfa Gu,et al.  Biomass burning aerosol characteristics for different vegetation types in different aging periods. , 2019, Environment international.

[42]  M. Vaughan,et al.  Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask , 2013 .

[43]  David G. Streets,et al.  Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific , 2003 .

[44]  Ulrich Pöschl,et al.  Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment , 2007 .

[45]  Harshvardhan,et al.  The use of satellite‐measured aerosol optical depth to constrain biomass burning emissions source strength in the global model GOCART , 2012 .

[46]  A. Watts,et al.  Brown carbon aerosols from burning of boreal peatlands: microphysical properties, emission factors, and implications for direct radiative forcing , 2016 .

[47]  J. Jimenez,et al.  Evolution of brown carbon in wildfire plumes , 2015 .

[48]  Ralph A. Kahn,et al.  Assessing the Altitude and Dispersion of Volcanic Plumes Using MISR Multi-angle Imaging from Space: Sixteen Years of Volcanic Activity in the Kamchatka Peninsula, Russia , 2017 .

[49]  E. Atlas,et al.  Emissions from biomass burning in the Yucatan , 2009 .

[50]  Louisa Emmons,et al.  © Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License. Atmospheric Chemistry and Physics Fast airborne aerosol size and chemistry measurements above , 2008 .

[51]  P. Formenti,et al.  Probing into the aging dynamics of biomass burning aerosol by using satellite measurements of aerosol optical depth and carbon monoxide , 2016 .

[52]  Zhanqing Li,et al.  Wildfire Smoke Particle Properties and Evolution, from Space-Based Multi-Angle Imaging , 2020, Remote. Sens..

[53]  R. Kahn,et al.  Interpreting the volcanological processes of Kamchatka, based on multi-sensor satellite observations , 2020 .

[54]  Michael J. Garay,et al.  MISR observations of Etna volcanic plumes , 2012 .

[55]  Michael J. Garay,et al.  Stereoscopic Height and Wind Retrievals for Aerosol Plumes with the MISR INteractive eXplorer (MINX) , 2013, Remote. Sens..

[56]  Glen W. Sachse,et al.  Fast‐response, high‐precision carbon monoxide sensor using a tunable diode laser absorption technique , 1987 .

[57]  Glen W. Sachse,et al.  Airborne tunable diode laser sensor for high-precision concentration and flux measurements of carbon monoxide and methane , 1991, Photonics West - Lasers and Applications in Science and Engineering.

[58]  R. Ferrare,et al.  Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples , 2011 .

[59]  M. Vaughan,et al.  Separating mixtures of aerosol types in airborne High Spectral Resolution Lidar data , 2013 .

[60]  V. Ramanathan,et al.  Brown carbon: a significant atmospheric absorber of solar radiation? , 2013 .

[61]  Cloud droplet activation of black carbon particles coated with organic compounds of varying solubility , 2017, Atmospheric Chemistry and Physics.

[62]  Andrew A. May,et al.  Gas‐particle partitioning of primary organic aerosol emissions: 3. Biomass burning , 2013 .

[63]  David R. Weise,et al.  Evolution of trace gases and particles emitted by a chaparral fire in California , 2011 .

[64]  Yang Chen,et al.  Example applications of the MISR INteractive eXplorer (MINX) software tool to wildfire smoke plume analyses , 2008, Optical Engineering + Applications.

[65]  S. Urbanski Combustion efficiency and emission factors for wildfire-season fires in mixed conifer forests of the northern Rocky Mountains, US , 2013 .

[66]  R. Kahn,et al.  Updated MISR over-water research aerosol retrieval algorithm – Part 2: A multi-angle aerosol retrieval algorithm for shallow, turbid, oligotrophic, and eutrophic waters , 2019, Atmospheric Measurement Techniques.

[67]  Bernard Pinty,et al.  Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview , 1998, IEEE Trans. Geosci. Remote. Sens..

[68]  A. Robinson,et al.  New particle formation and growth in biomass burning plumes: An important source of cloud condensation nuclei , 2012 .

[69]  M. Dubey,et al.  Brown carbon in tar balls from smoldering biomass combustion , 2010 .

[70]  M. Kahnert,et al.  Observations of the spectral dependence of linear particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar , 2015 .