On Compact Representations of Propositional Circumscription

We prove that — unless the polynomial hierarchy collapses at the second level — the size of a purely propositional representation of the circumscription CIRC(T) of a propositional formula T grows faster than any polynomial as the size of T increases. We then analyze the significance of this result in the related field of closed-world reasoning.

[1]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[2]  Richard J. Lipton,et al.  Some connections between nonuniform and uniform complexity classes , 1980, STOC '80.

[3]  Jack Minker,et al.  On Indefinite Databases and the Closed World Assumption , 1987, CADE.

[4]  Chee-Keng Yap,et al.  Some Consequences of Non-Uniform Conditions on Uniform Classes , 1983, Theor. Comput. Sci..

[5]  Vladimir Lifschitz,et al.  Computing Circumscription , 1985, IJCAI.

[6]  Hector J. Levesque,et al.  Making Believers out of Computers , 1986, Artif. Intell..

[7]  T. Krishnaprasad On the computability of circumscription , 1988 .

[8]  Arkady Rabinov A Generalization of Collapsible Cases of Circumscription , 1989, Artif. Intell..

[9]  Teodor C. Przymusinski,et al.  On the Relationship Between Circumscription and Negation as Failure , 1989, Artif. Intell..

[10]  David S. Johnson,et al.  A Catalog of Complexity Classes , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[11]  Christos H. Papadimitriou,et al.  Some computational aspects of circumscription , 1988, JACM.

[12]  Bart Selman,et al.  Forming Concepts for Fast Inference , 1992, AAAI.

[13]  Marco Cadoli,et al.  The Complexity of Model Checking for Circumscriptive Formulae , 1992, Inf. Process. Lett..

[14]  Georg Gottlob,et al.  Propositional Circumscription and Extended Closed-World Reasoning are IIp2-Complete , 1993, Theor. Comput. Sci..

[15]  Moshe Tennenholtz,et al.  Off-line Reasoning for On-line Efficiency , 1993, IJCAI.