Development of an intravenous membrane oxygenator: enhanced intravenous gas exchange through convective mixing of blood around hollow fiber membranes.

In vitro testing of a new prototype intravenous membrane oxygenator (IMO) is reported. The new IMO design consists of matted hollow fiber membranes arranged around a centrally positioned tripartite balloon. Short gas flow paths and consistent, reproducible fiber geometry after insertion of the device result in an augmented oxygen flux of up to 800% with balloon activation compared with the static mode (balloon off). Operation of the new IMO device with the balloon on versus the balloon off results in a 400% increase in carbon dioxide flux. Gas flow rates of up to 9.5 L/min through the 14-cm-long hollow fibers have been achieved with vacuum pressures of 250 mm Hg. Gas exchange efficiency for intravenous membrane oxygenators can be increased by emphasizing the following design features: short gas flow paths, consistent and reproducible fiber geometry, and most importantly, an active means of enhancing convective mixing of blood around the hollow fiber membranes.