暂无分享,去创建一个
Barnabás Póczos | Jeff G. Schneider | Junier B. Oliva | Dougal J. Sutherland | Danica J. Sutherland | J. Schneider | B. Póczos
[1] H. Akaike,et al. Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .
[2] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[3] Jianhua Lin,et al. Divergence measures based on the Shannon entropy , 1991, IEEE Trans. Inf. Theory.
[4] David Haussler,et al. Exploiting Generative Models in Discriminative Classifiers , 1998, NIPS.
[5] Christopher K. I. Williams,et al. Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.
[6] E. Giné,et al. Rates of strong uniform consistency for multivariate kernel density estimators , 2002 .
[7] Jitendra Malik,et al. Spectral Partitioning with Indefinite Kernels Using the Nyström Extension , 2002, ECCV.
[8] Tony Jebara,et al. A Kernel Between Sets of Vectors , 2003, ICML.
[9] Nuno Vasconcelos,et al. A Kullback-Leibler Divergence Based Kernel for SVM Classification in Multimedia Applications , 2003, NIPS.
[10] Claus Bahlmann,et al. Learning with Distance Substitution Kernels , 2004, DAGM-Symposium.
[11] Jitendra Malik,et al. Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001, International Journal of Computer Vision.
[12] Tony Jebara,et al. Probability Product Kernels , 2004, J. Mach. Learn. Res..
[13] B. Fuglede. Spirals in Hilbert space: With an application in information theory , 2005 .
[14] Cordelia Schmid,et al. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).
[15] Benjamin Recht,et al. Random Features for Large-Scale Kernel Machines , 2007, NIPS.
[16] Chih-Jen Lin,et al. LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..
[17] Subhransu Maji,et al. Max-margin additive classifiers for detection , 2009, 2009 IEEE 12th International Conference on Computer Vision.
[18] Zaïd Harchaoui,et al. A Fast, Consistent Kernel Two-Sample Test , 2009, NIPS.
[19] Alex Krizhevsky,et al. Learning Multiple Layers of Features from Tiny Images , 2009 .
[20] Qing Wang,et al. Divergence Estimation for Multidimensional Densities Via $k$-Nearest-Neighbor Distances , 2009, IEEE Transactions on Information Theory.
[21] Maya R. Gupta,et al. Similarity-based Classification: Concepts and Algorithms , 2009, J. Mach. Learn. Res..
[22] Cristian Sminchisescu,et al. Random Fourier Approximations for Skewed Multiplicative Histogram Kernels , 2010, DAGM-Symposium.
[23] C. V. Jawahar,et al. Generalized RBF feature maps for Efficient Detection , 2010, BMVC.
[24] Andrea Vedaldi,et al. Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.
[25] Chih-Jen Lin,et al. LIBSVM: A library for support vector machines , 2011, TIST.
[26] Barnabás Póczos,et al. Nonparametric kernel estimators for image classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.
[27] Bernhard Schölkopf,et al. Learning from Distributions via Support Measure Machines , 2012, NIPS.
[28] Andrew Zisserman,et al. Efficient Additive Kernels via Explicit Feature Maps , 2012, IEEE Trans. Pattern Anal. Mach. Intell..
[29] Larry A. Wasserman,et al. Sparse Nonparametric Graphical Models , 2012, ArXiv.
[30] Alexander J. Smola,et al. Fastfood: Approximate Kernel Expansions in Loglinear Time , 2014, ArXiv.
[31] Alfred O. Hero,et al. Ensemble Estimators for Multivariate Entropy Estimation , 2013, IEEE Transactions on Information Theory.
[32] Barnabás Póczos,et al. Distribution-Free Distribution Regression , 2013, AISTATS.
[33] Barnabás Póczos,et al. Distribution to Distribution Regression , 2013, ICML.
[34] Kirthevasan Kandasamy,et al. Nonparametric Estimation of Renyi Divergence and Friends , 2014, ICML.
[35] Bolei Zhou,et al. Learning Deep Features for Scene Recognition using Places Database , 2014, NIPS.
[36] Barnabás Póczos,et al. Fast Distribution To Real Regression , 2013, AISTATS.
[37] Andrew Gelman,et al. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..
[38] Danica J. Sutherland,et al. A MACHINE LEARNING APPROACH FOR DYNAMICAL MASS MEASUREMENTS OF GALAXY CLUSTERS , 2014, 1410.0686.
[39] Alexander J. Smola,et al. Who Supported Obama in 2012?: Ecological Inference through Distribution Regression , 2015, KDD.
[40] Guoqing Liu,et al. Visual Recognition Using Directional Distribution Distance , 2015, ArXiv.
[41] David Lopez-Paz,et al. Towards a Learning Theory of Causation , 2015 .
[42] Jeff G. Schneider,et al. On the Error of Random Fourier Features , 2015, UAI.
[43] Mehryar Mohri,et al. Foundations of Coupled Nonlinear Dimensionality Reduction , 2015, ArXiv.
[44] Arthur Gretton,et al. Kernel-Based Just-In-Time Learning for Passing Expectation Propagation Messages , 2015, UAI.
[45] Barnabás Póczos,et al. Two-stage sampled learning theory on distributions , 2015, AISTATS.
[46] Shih-Fu Chang,et al. Compact Nonlinear Maps and Circulant Extensions , 2015, ArXiv.
[47] Andrew Zisserman,et al. Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.