Online Aerodynamic Model Structure Selection and Parameter Estimation for Fault Tolerant Control

This paper describes a new recursive algorithm for the approximation of time varying nonlinear aerodynamic models by means of a joint adaptive selection of the model structure and parameter estimation. This procedure is called Adaptive Recursive Orthogonal Least Squares (AROLS), and is an extension and modification of the classical Recursive Orthogonal Least Squares (ROLS). This algorithm is considered to be particularly useful for indirect fault tolerant flight control, making use of model based adaptive control routines. After the failure, a completely new aerodynamic model can be elaborated recursively with respect to structure as well as parameter values. The performance of the identification algorithm is demonstrated on some simulation data sets.

[1]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[2]  H. Akaike Fitting autoregressive models for prediction , 1969 .

[3]  H. Akaike A new look at the statistical model identification , 1974 .

[4]  H. Akaike Stochastic theory of minimal realization , 1974 .

[5]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[6]  Patrick C. Murphy,et al.  Determination of Airplane Model Structure From Flight Data by Using Modified Stepwise Regression , 1981 .

[7]  Sheng Chen,et al.  Orthogonal least squares methods and their application to non-linear system identification , 1989 .

[8]  A. Atkinson Subset Selection in Regression , 1992 .

[9]  Eugene A. Morelli,et al.  Nonlinear aerodynamic modeling using multivariate orthogonal functions , 1993 .

[10]  M. Laban On-Line Aircraft Aerodynamic Model Identification , 1994 .

[11]  Jan Albert Mulder,et al.  Decomposition of Aircraft State and Parameter Estimation Problems , 1994 .

[12]  Stephen A. Billings,et al.  Adaptive model selection and estimation for nonlinear systems using a sliding data window , 1995, Signal Process..

[13]  Stephen A. Billings,et al.  On-line Supervised Adaptive Training Using Radial Basis Function Networks , 1996, Neural Networks.

[14]  Detlef Rohlf,et al.  X-31A System Identification Using Single-Surface Excitation at High Angles of Attack. , 1996 .

[15]  Stephen A. Billings,et al.  On-line Structure Detection and Parameter Estimation with Exponential Windowing for Nonlinear Systems , 1996, Eur. J. Control.

[16]  R. V. Jategaonkar,et al.  Evolution of flight vehicle system identification , 1996 .

[17]  E. Morelli Global nonlinear parametric modelling with application to F-16 aerodynamics , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[18]  S. A. Billings,et al.  Structure selective updating for nonlinear models and radial basis function neural networks , 1998 .

[19]  David G. Ward,et al.  Development and Flight Testing of a Parameter Identification Algorithm for Reconfigurable Control , 1998 .

[20]  Eugene A. Morelli,et al.  Real-Time Parameter Estimation in the Frequency Domain , 1999 .

[21]  J. A. Mulder,et al.  NON-LINEAR AIRCRAFT FLIGHT PATH RECONSTRUCTION REVIEW AND NEW ADVANCES , 1999 .

[22]  Mario G. Perhinschi,et al.  Online Parameter Estimation Techniques Comparison Within a Fault Tolerant Flight Control System , 2002 .

[23]  Gary J. Balas,et al.  APPLICATION OF FDI TO A NONLINEAR BOEING-747 AIRCRAFT , 2002 .

[24]  Jan M. Maciejowski,et al.  MPC fault-tolerant flight control case study: flight 1862 , 2003 .

[25]  J. Umakant,et al.  Nonlinear Modeling and Roll Derivatives Estimation From Flight Data Using OLS , 2004 .

[26]  Eugene A. Morelli,et al.  Aircraft system identification : theory and practice , 2006 .

[27]  Hafid Smaili,et al.  A Simulation Benchmark for Integrated Fault Tolerant Flight Control Evaluation , 2006 .

[28]  J. A. Mulder,et al.  Real Time Damaged Aircraft Model Identification for Reconfiguring Flight Control , 2007 .

[29]  D. A. Joosten,et al.  Effective control allocation in fault-tolerant flight control using feedback linearisation and model predictive control , 2007, 2007 European Control Conference (ECC).

[30]  Andreas Varga,et al.  Fault detection and isolation of actuator failures for a large transport aircraft , 2007 .

[31]  Eric N. Johnson,et al.  In Flight Validation of Adaptive Flight Control Methods , 2008 .

[32]  Eugene A. Morelli,et al.  Real-Time Dynamic Modeling: Data Information Requirements and Flight-Test Results , 2008 .

[33]  Halim Alwi,et al.  Fault Tolerant Sliding Mode Control Design with Piloted Simulator Evaluation , 2008 .

[34]  Jan Albert Mulder,et al.  Nonlinear Adaptive Trajectory Control Applied to an F-16 Model , 2008 .

[35]  Jérôme Cieslak,et al.  Development of an Active Fault-Tolerant Flight Control Strategy , 2008 .

[36]  Hafid Smaili,et al.  Piloted Simulator Evaluation of New Fault-Tolerant Flight Control Algorithms for Reconstructed Accident Scenarios , 2008 .

[37]  Thomas Lombaerts,et al.  Fault-tolerant control using dynamic inversion and model-predictive control applied to an aerospace benchmark ⋆ , 2008 .

[38]  Ten-Huei Guo,et al.  Fast Thrust Response for Improved Flight/Engine Control under Emergency Conditions , 2008 .

[39]  Raman K. Mehra,et al.  An Integrated Approach to Damage Accommodation in Flight Control , 2008 .

[40]  David G. Ward,et al.  Hybrid Robust Control and Reinforcement Learning for Optimal Upset Recovery , 2008 .

[41]  Christine M. Belcastro,et al.  Aircraft Loss-of-Control Accident Prevention: Switching Control of the GTM Aircraft with Elevator Jam Failures , 2008 .

[42]  Thomas Lombaerts,et al.  Computationally Efficient use of MPC and Dynamic Inversion for Reconfigurable Flight Control , 2008 .

[43]  John T. Bosworth Flight Results of the NF-15B Intelligent Flight Control System (IFCS) Aircraft with Adaptation to a Longitudinally Destabilized Plant , 2008 .

[44]  Patrick C. Murphy,et al.  Transport Aircraft System Identification from Wind Tunnel Data , 2008 .

[45]  Jan Albert Mulder,et al.  Flight Control Reconfiguration Based on Online Physical Model Identification and Nonlinear Dynamic Inversion , 2008 .

[46]  Michel Verhaegen,et al.  Fault-Tolerant Subspace Predictive Control Applied to a Boeing 747 Model , 2008 .

[47]  Jan Albert Mulder,et al.  Nonlinear Reconfiguring Flight Control Based on Online Physical Model Identification , 2009 .