Conjugation-based compression for Hebrew texts

Traditional compression techniques do not look deeply into the morphology of languages. This can be less critical in languages like English where most of the sequences are illegal according to the grammatical rules of the language, for example, zx, bv or qe; hence the morphology can add a little information that can be beneficial for the compression algorithm. However, this negligence can be a significant flaw in languages like Hebrew where the grammatical rules allow much more freedom in the sequences of letters and, except tet after gimel, any pair is legal; hence compressing without taking the morphological rules into account can yield a poorer compression ratio. This article suggests a tool that optimizes the Burrows-Wheeler algorithm which is an unaware morphological rules compression method. It first preprocesses a Hebrew text file according to the Hebrew conjugation rules, and, after that, it provides the Burrows-Wheeler algorithm with this preprocessed file so that can be compressed better. Experimental results show a significant improvement.

[1]  D. J. Wheeler,et al.  A Block-sorting Lossless Data Compression Algorithm , 1994 .

[2]  Abraham Lempel,et al.  A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.

[3]  Shuly Wintner,et al.  Hebrew Computational Linguistics: Past and Future , 2004, Artificial Intelligence Review.

[4]  Frank Rubin,et al.  Arithmetic stream coding using fixed precision registers , 1979, IEEE Trans. Inf. Theory.

[5]  Sergei Nirenburg,et al.  HUHU: The Hebrew University Hebrew Understander , 1984, Comput. Lang..

[6]  Banu Diri,et al.  Content Based Compression of Turkish Documents , 2001 .

[7]  Aviezri S. Fraenkel,et al.  Full text document retrieval: Hebrew legal texts (report on the first phase of the responsa retrieval project) , 1971, SIGIR '71.

[8]  Nachum Dershowitz,et al.  KEDMA—Linguistic Tools for Retrieval Systems , 1978, JACM.

[9]  Alistair Moffat,et al.  Can we do without ranks in Burrows Wheeler transform compression? , 2001, Proceedings DCC 2001. Data Compression Conference.

[10]  Yaakov HaCohen-Kerner,et al.  Summarization of Jewish Law Articles in Hebrew , 2003, CAINE.

[11]  Alon Itai,et al.  Learning Morpho-Lexical Probabilities from an Untagged Corpus with an Application to Hebrew , 1995, CL.

[12]  P. Eck,et al.  Syntax-oriented coding (SoC): a new algorithm for the compression of messages constrained by syntax rules , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[13]  D. Huffman A Method for the Construction of Minimum-Redundancy Codes , 1952 .

[14]  Ian H. Witten,et al.  Arithmetic coding for data compression , 1987, CACM.

[15]  N. H. Beebe A Complete Bibliography of ACM Transactions on Asian Language Information Processing , 2007 .

[16]  Sane Yagi,et al.  T-code compression for Arabic computational morphology , 2003, ALTA.

[17]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[18]  Yaacov Choueka,et al.  Disambiguation by short contexts , 1985, Comput. Humanit..

[19]  Yaacov Choueka,et al.  Computerized full-text retrieval systems and research in the humanities: The responsa project , 1980, Computers and the Humanities.

[20]  Shmuel Tomi Klein,et al.  Is Huffman coding dead? , 1993, Computing.

[21]  M. Nelson Data compression with the Burrows-Wheeler Transform , 1996 .

[22]  Alistair Moffat,et al.  Implementing the PPM data compression scheme , 1990, IEEE Trans. Commun..

[23]  Gökhan Tür,et al.  Statistical Morphological Disambiguation for Agglutinative Languages , 2000, COLING.

[24]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.

[25]  Abraham Lempel,et al.  Compression of individual sequences via variable-rate coding , 1978, IEEE Trans. Inf. Theory.

[26]  Shuly Wintner,et al.  Syntactic Analysis of Hebrew Sentences , 1995, Nat. Lang. Eng..