A preconditioned descent algorithm for variational inequalities of the second kind involving the p-Laplacian operator

This paper is concerned with the numerical solution of a class of variational inequalities of the second kind, involving the p-Laplacian operator. This kind of problems arise, for instance, in the mathematical modelling of non-Newtonian fluids. We study these problems by using a regularization approach, based on a Huber smoothing process. Well posedness of the regularized problems is proved, and convergence of the regularized solutions to the solution of the original problem is verified. We propose a preconditioned descent method for the numerical solution of these problems and analyze the convergence of this method in function spaces. The existence of admissible descent directions is established by variational methods and admissible steps are obtained by a backtracking algorithm which approximates the objective functional by polynomial models. Finally, several numerical experiments are carried out to show the efficiency of the methodology here introduced.

[1]  C. Geiger,et al.  Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben , 1999 .

[2]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[3]  Michael Hintermüller,et al.  A Sequential Minimization Technique for Elliptic Quasi-variational Inequalities with Gradient Constraints , 2012, SIAM J. Optim..

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  John W. Barrett,et al.  Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear elliptic equations and variational inequalities , 1994 .

[6]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[7]  N. Trudinger Linear elliptic operators with measurable coe cients , 1973 .

[8]  Michael Struwe,et al.  Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems , 1990 .

[9]  S. G. Andrade,et al.  A combined BDF-semismooth Newton approach for time-dependent Bingham flow , 2012 .

[10]  Usik Lee,et al.  Two-fluid Herschel-Bulkley model for blood flow in catheterized arteries , 2008 .

[11]  Zhenjiang You,et al.  Application of the augmented Lagrangian method to steady pipe flows of Bingham, Casson and Herschel-Bulkley fluids , 2005 .

[12]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[13]  Jacques Simon,et al.  Regularite de la solution d’une equation non lineaire dans ℝN , 1978 .

[14]  Ruo Li,et al.  Preconditioned Descent Algorithms for p-Laplacian , 2007, J. Sci. Comput..

[15]  Alfio Quarteroni,et al.  Computational vascular fluid dynamics: problems, models and methods , 2000 .

[16]  Ya-Xiang Yuan,et al.  Optimization theory and methods , 2006 .

[17]  Juan Carlos De Los Reyes,et al.  Numerical PDE-Constrained Optimization , 2015 .

[18]  Zoubin Ghahramani,et al.  Variational Methods , 2014, Computer Vision, A Reference Guide.

[19]  Rodolfo Bermejo,et al.  A Multigrid Algorithm for the p-Laplacian , 1999, SIAM J. Sci. Comput..

[20]  Carsten Carstensen,et al.  Remarks around 50 lines of Matlab: short finite element implementation , 1999, Numerical Algorithms.

[21]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[22]  Ed Bueler,et al.  Steady, Shallow Ice Sheets as Obstacle Problems: Well-Posedness and Finite Element Approximation , 2012, SIAM J. Appl. Math..

[23]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[24]  John W. Barrett,et al.  Finite element approximation of the p-Laplacian , 1993 .

[25]  Sergio González Andrade,et al.  Numerical simulation of two-dimensional Bingham fluid flow by semismooth Newton methods , 2010, J. Comput. Appl. Math..

[26]  Michael Ulbrich,et al.  Semismooth Newton Methods for Operator Equations in Function Spaces , 2002, SIAM J. Optim..

[27]  C. Simader,et al.  On Dirichlet's Boundary Value Problem , 1972 .

[28]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[29]  S. R. Shah An Innovative Study for non-Newtonian Behaviour of Blood Flow in Stenosed Artery using Herschel-Bulkley Fluid Model , 2013, BSBT 2013.

[30]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[31]  W. Marsden I and J , 2012 .

[32]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[33]  M. Hintermüller,et al.  A duality based semismooth Newton framework for solving variational inequalities of the second kind , 2011 .

[34]  Michael Hintermüller,et al.  Parabolic Quasi-variational Inequalities with Gradient-Type Constraints , 2013, SIAM J. Optim..

[35]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[36]  Juan Carlos De Los Reyes,et al.  Path following methods for steady laminar Bingham flow in cylindrical pipes , 2009 .

[37]  Xiaojun Chen,et al.  Smoothing Methods and Semismooth Methods for Nondifferentiable Operator Equations , 2000, SIAM J. Numer. Anal..

[38]  Jorge Nocedal,et al.  Theory of algorithms for unconstrained optimization , 1992, Acta Numerica.

[39]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[40]  Jesús Ildefonso Díaz Díaz,et al.  Energy Methods for Free Boundary Problems , 2002 .

[41]  J. Jahn Introduction to the Theory of Nonlinear Optimization , 1994 .

[42]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[43]  Eduardo Casas,et al.  Distributed Control of Systems Governed by a General Class of Quasilinear Elliptic Equations , 1993 .

[44]  R. J. Duffin,et al.  Positivity of weak solutions of non-uniformly elliptic equations , 1975 .

[45]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[46]  Jesús Ildefonso Díaz Díaz,et al.  Energy Methods for Free Boundary Problems: Applications to Nonlinear PDEs and Fluid Mechanics , 2001 .