A preconditioned descent algorithm for variational inequalities of the second kind involving the p-Laplacian operator
暂无分享,去创建一个
[1] C. Geiger,et al. Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben , 1999 .
[2] Hyunjoong Kim,et al. Functional Analysis I , 2017 .
[3] Michael Hintermüller,et al. A Sequential Minimization Technique for Elliptic Quasi-variational Inequalities with Gradient Constraints , 2012, SIAM J. Optim..
[4] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[5] John W. Barrett,et al. Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear elliptic equations and variational inequalities , 1994 .
[6] J. Lions. Optimal Control of Systems Governed by Partial Differential Equations , 1971 .
[7] N. Trudinger. Linear elliptic operators with measurable coe cients , 1973 .
[8] Michael Struwe,et al. Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems , 1990 .
[9] S. G. Andrade,et al. A combined BDF-semismooth Newton approach for time-dependent Bingham flow , 2012 .
[10] Usik Lee,et al. Two-fluid Herschel-Bulkley model for blood flow in catheterized arteries , 2008 .
[11] Zhenjiang You,et al. Application of the augmented Lagrangian method to steady pipe flows of Bingham, Casson and Herschel-Bulkley fluids , 2005 .
[12] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[13] Jacques Simon,et al. Regularite de la solution d’une equation non lineaire dans ℝN , 1978 .
[14] Ruo Li,et al. Preconditioned Descent Algorithms for p-Laplacian , 2007, J. Sci. Comput..
[15] Alfio Quarteroni,et al. Computational vascular fluid dynamics: problems, models and methods , 2000 .
[16] Ya-Xiang Yuan,et al. Optimization theory and methods , 2006 .
[17] Juan Carlos De Los Reyes,et al. Numerical PDE-Constrained Optimization , 2015 .
[18] Zoubin Ghahramani,et al. Variational Methods , 2014, Computer Vision, A Reference Guide.
[19] Rodolfo Bermejo,et al. A Multigrid Algorithm for the p-Laplacian , 1999, SIAM J. Sci. Comput..
[20] Carsten Carstensen,et al. Remarks around 50 lines of Matlab: short finite element implementation , 1999, Numerical Algorithms.
[21] Marion Kee,et al. Analysis , 2004, Machine Translation.
[22] Ed Bueler,et al. Steady, Shallow Ice Sheets as Obstacle Problems: Well-Posedness and Finite Element Approximation , 2012, SIAM J. Appl. Math..
[23] Kazufumi Ito,et al. The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..
[24] John W. Barrett,et al. Finite element approximation of the p-Laplacian , 1993 .
[25] Sergio González Andrade,et al. Numerical simulation of two-dimensional Bingham fluid flow by semismooth Newton methods , 2010, J. Comput. Appl. Math..
[26] Michael Ulbrich,et al. Semismooth Newton Methods for Operator Equations in Function Spaces , 2002, SIAM J. Optim..
[27] C. Simader,et al. On Dirichlet's Boundary Value Problem , 1972 .
[28] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .
[29] S. R. Shah. An Innovative Study for non-Newtonian Behaviour of Blood Flow in Stenosed Artery using Herschel-Bulkley Fluid Model , 2013, BSBT 2013.
[30] Stefan Ulbrich,et al. Optimization with PDE Constraints , 2008, Mathematical modelling.
[31] W. Marsden. I and J , 2012 .
[32] John E. Dennis,et al. Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.
[33] M. Hintermüller,et al. A duality based semismooth Newton framework for solving variational inequalities of the second kind , 2011 .
[34] Michael Hintermüller,et al. Parabolic Quasi-variational Inequalities with Gradient-Type Constraints , 2013, SIAM J. Optim..
[35] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[36] Juan Carlos De Los Reyes,et al. Path following methods for steady laminar Bingham flow in cylindrical pipes , 2009 .
[37] Xiaojun Chen,et al. Smoothing Methods and Semismooth Methods for Nondifferentiable Operator Equations , 2000, SIAM J. Numer. Anal..
[38] Jorge Nocedal,et al. Theory of algorithms for unconstrained optimization , 1992, Acta Numerica.
[39] C. DeWitt-Morette,et al. Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .
[40] Jesús Ildefonso Díaz Díaz,et al. Energy Methods for Free Boundary Problems , 2002 .
[41] J. Jahn. Introduction to the Theory of Nonlinear Optimization , 1994 .
[42] R. Glowinski,et al. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .
[43] Eduardo Casas,et al. Distributed Control of Systems Governed by a General Class of Quasilinear Elliptic Equations , 1993 .
[44] R. J. Duffin,et al. Positivity of weak solutions of non-uniformly elliptic equations , 1975 .
[45] Carl Tim Kelley,et al. Iterative methods for optimization , 1999, Frontiers in applied mathematics.
[46] Jesús Ildefonso Díaz Díaz,et al. Energy Methods for Free Boundary Problems: Applications to Nonlinear PDEs and Fluid Mechanics , 2001 .