Modeling the rate-dependent inelastic deformation behavior of porous polycrystalline silver films
暂无分享,去创建一个
Andreas Schletz | S. A. Letz | A. Farooghian | F. B. Simon | S. Letz | A. Schletz | F. Simon | A. Farooghian
[1] Klaus-Dieter Lang,et al. Combination of Experimental and Simulation Methods for Analysis of Sintered Ag Joints for High Temperature Applications , 2016, 2016 IEEE 66th Electronic Components and Technology Conference (ECTC).
[2] G. Lu,et al. Creep properties of low-temperature sintered nano-silver lap shear joints , 2013 .
[3] H. V. Swygenhoven,et al. Deformation behavior of nano-porous polycrystalline silver. Part II: Simulations , 2017 .
[4] Xin Li,et al. Applying viscoplastic constitutive models to predict ratcheting behavior of sintered nanosilver lap-shear joint , 2014 .
[5] H. V. Swygenhoven,et al. Deformation behavior of nanoporous polycrystalline silver. Part I: Microstructure and mechanical properties , 2017 .
[6] H. Reichl,et al. Thermo-mechanical reliability of power flip-chip cooling concepts , 2004, 2004 Proceedings. 54th Electronic Components and Technology Conference (IEEE Cat. No.04CH37546).
[7] P. Perzyna. Fundamental Problems in Viscoplasticity , 1966 .
[8] F. H. Norton,et al. The Creep of Steel at High Temperatures , 2017 .
[9] Y. Kariya,et al. Low-Cycle Fatigue Life and Fatigue Crack Propagation of Sintered Ag Nanoparticles , 2017, Journal of Electronic Materials.
[10] R. Mises. Mechanik der festen Körper im plastisch- deformablen Zustand , 1913 .
[11] K. Suganuma,et al. Macroscale and microscale fracture toughness of microporous sintered Ag for applications in power electronic devices , 2017 .