Mass-Transport Considerations Pertinent to Aqueous Phase Reactions of Gases in Liquid-Water Clouds

Reactions of gases in liquid-water clouds are potentially important in the transformation of atmospheric pollutants affecting their transport in the atmosphere and subsequent removal and deposition to the surface. Such processes consist of the following sequence of steps: Mass-transport of the reagent gas or gases to the air-water interface; transfer across the interface and establishment of solubility equilibria locally at the interface; mass-transport of the dissolved gas or gases within the aqueous phase; aqueous-phase chemical reaction(s); mass-transport of reaction product(s) and possible subsequent evolution into the gas-phase. Description of the rate of the overall process requires identification of the rate-limiting step (or steps) and evaluation of the rate of such step(s). Identification of the rate-limiting step may be achieved by evaluation and comparison of the characteristic times pertinent to the several processes and may be readily carried out by methods outlined herein, for known or assumed reagent concentrations, drop size, and fundamental constants as follows: gas- and aqueous-phase diffusion coefficients; Henry’s law coefficient and other pertinent equilibrium constants; interfacial mass-transfer accommodation coefficient; aqueous-phase reaction rate constants(s). A graphical method is described whereby it may be ascertained whether a given reaction is controlled solely by reagent solubility and intrinsic chemical kinetic or is mass-transport limited by one or another of the above processes. In the absence of mass-transport limitation, reaction rates may be evaluated uniformly for the entire liquid-water content of the cloud using equilibrium reagent concentrations. In contrast, where appreciable mass-transport limitation is indicated, evaluation of the overall rate requires knowledge of and integration over the drop-size distribution characterizing the cloud.

[1]  S. Andrew A simple method of measuring gaseous diffusion coefficients , 1955 .

[2]  S. Schwartz,et al.  OXIDATION OF SO2 IN AQUEOUS DROPLETS: MASS- TRANSPORT LIMITATION IN LABORATORY STUDIES AND THE AMBIENT ATMOSPHERE* , 1981 .

[3]  E. W. Blair,et al.  V.—The partial formaldehyde vapour pressures of aqueous solutions of formaldehyde. Part I , 2022 .

[4]  N. Fuchs,et al.  HIGH-DISPERSED AEROSOLS , 1971 .

[5]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[6]  D. Davis,et al.  Aqueous-phase source of formic acid in clouds , 1983, Nature.

[7]  J. Bahcall,et al.  RELATIVISTIC Z-DEPENDENT THEORY OF MANY-ELECTRON ATOMS , 1962 .

[8]  W. WashburnE.,et al.  International Critical Tables , 1927 .

[9]  B. Heikes,et al.  Effects of heterogeneous processes on NO3, HONO, and HNO3 chemistry in the troposphere , 1983 .

[10]  J. Calvert SO[2], NO, and NO[2] oxidation mechanisms : atmospheric considerations , 1984 .

[11]  J. Maa Evaporation Coefficient of Liquids , 1967 .

[12]  E. A. Harvey,et al.  The absorption of carbon dioxide by a quiescent liquid , 1959 .

[13]  H. Johnstone,et al.  The Solubility of Sulfur Dioxide at Low Partial Pressures. The Ionization Constant and Heat of Ionization of Sulfurous Acid1 , 1934 .

[14]  L. Martin,et al.  Aqueous oxidation of sulfur dioxide by hydrogen peroxide at low pH , 1981 .

[15]  B. J. Mason,et al.  The physics of clouds , 1971 .

[16]  D. Jacob,et al.  Fogwater chemistry in an urban atmosphere , 1983 .

[17]  P. Warneck The Equilibrium Distribution of Atmospheric Gases Between the Two Phases of Liquid Water Clouds , 1986 .

[18]  D. Davis,et al.  The free radical chemistry of cloud droplets and its impact upon the composition of rain , 1982 .

[19]  D. Himmelblau Diffusion of Dissolved Gases in Liquids , 1964 .

[20]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[21]  Irving Langmuir,et al.  The Vapor Pressure of Metallic Tungsten , 1913 .

[22]  J. R. Pfafflin,et al.  Advances in environmental science and engineering , 1979 .

[23]  P. Wagner Aerosol Growth by Condensation , 1982 .

[24]  Arvo Lannus,et al.  Gas‐Liquid Reactions , 1970 .

[25]  J. Giddings,et al.  NEW METHOD FOR PREDICTION OF BINARY GAS-PHASE DIFFUSION COEFFICIENTS , 1966 .

[26]  R. Rogers,et al.  A short course in cloud physics , 1976 .

[27]  E.,et al.  MASS-TRANSPORT LIMITATION TO THE RATE OF REACTION OF GASES IN LIQUID DROPLETS : APPLICATION TO OXIDATION OF SO 2 IN AQUEOUS SOLUTIONS , 1980 .

[28]  G. Hidy,et al.  Topics in current aerosol research , 1971 .

[29]  Edward A. Mason,et al.  Gaseous Diffusion Coefficients , 1972 .

[30]  J. Maa Rates of Evaporation and Condensation between Pure Liquids and Their Own Vapors , 1970 .

[31]  H. Pruppacher,et al.  A Sensitivity Study of a Theoretical Model Of SO2 Scavenging by Water Drops in Air , 1981 .

[32]  H. Hertz,et al.  Ueber die Verdunstung der Flüssigkeiten, insbesondere des Quecksilbers, im luftleeren Raume , 1882 .

[33]  W. Marlow Aerosol microphysics II. Chemical physics of microparticles. , 1982 .

[34]  E. Davis Transport Phenomena with Single Aerosol Particles , 1982 .

[35]  A. Adamson A textbook of physical chemistry , 1973 .

[36]  M. Knudsen,et al.  Die maximale Verdampfungsgeschwindigkeit des Quecksilbers , 1915 .

[37]  V. K. Mer Retardation of evaporation by monolayers : transport processes , 1962 .

[38]  G. Gravenhorst,et al.  Heterogeneous SO2-oxidation in the droplet phase , 1978 .

[39]  S. Schwartz,et al.  Evaluation of the Rate of Uptake of Nitrogen Dioxide by Atmospheric and Surface Liquid Water , 1981 .

[40]  P. Hobbs,et al.  Clouds, Their Formation, Optical Properties, and Effects , 1981 .

[41]  H. L. Toor,et al.  Interfacial resistance in gas absorption , 1959 .

[42]  G. Lugg,et al.  Diffusion coefficients of some organic and other vapors in air , 1968 .

[43]  C. Wilke,et al.  Correlation of diffusion coefficients in dilute solutions , 1955 .

[44]  C. Y. Lee,et al.  Estimation of Diffusion Coefficients for Gases and Vapors , 1955 .

[45]  G. Hidy,et al.  The dynamics of aerocolloidal systems , 1970 .

[46]  S. Schwartz Gas‐ and aqueous‐phase chemistry of HO2 in liquid water clouds , 1984 .

[47]  V. Mohnen Die radioaktive Markierung von Aerosolen , 1969 .

[48]  R. Littlewood,et al.  On the evaporation coefficient , 1956 .

[49]  J. W. Winchester,et al.  Acidity in air and water in a case of warm frontal precipitation , 1983 .

[50]  E. Davis,et al.  Knudsen aerosol evaporation , 1976 .

[51]  Charles J. Weschler,et al.  Organic films on atmospheric aerosol particles, fog droplets, cloud droplets, raindrops, and snowflakes , 1983 .

[52]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[53]  S. Schwartz,et al.  Acidic and related constituents in liquid water stratiform clouds , 1984 .

[54]  B. Dahneke Simple Kinetic Theory of Brownian Diffusion in Vapors and Aerosols , 1983 .

[55]  E. Briner,et al.  Détermination des solubilités de l'ozone dans l'eau et dans une solution aqueuse de chlorure de sodium; calcul des solubilités de l'ozone atmosphérique dans les eaux , 1939 .

[56]  B. Paul Compilation of Evaporation Coefficients , 1962 .

[57]  R. Knollenberg,et al.  Techniques for probing cloud microstructure , 1981 .

[58]  S. Schwartz,et al.  Reaction kinetics of nitrogen dioxide with liquid water at low partial pressure , 1981 .