Explicit formulae for all higher order exponential lacunary generating functions of Hermite polynomials

For a sequence $P=(p_n(x))_{n=0}^{\infty}$ of polynomials $p_n(x)$, we study the $K$-tuple and $L$-shifted exponential lacunary generating functions $\mathcal{G}_{K,L}(\lambda;x):=\sum_{n=0}^{\infty}\frac{\lambda^n}{n!} p_{n\cdot K+L}(x)$, for $K=1,2\dotsc$ and $L=0,1,2\dotsc$. We establish an algorithm for efficiently computing $\mathcal{G}_{K,L}(\lambda;x)$ for generic polynomial sequences $P$. This procedure is exemplified by application to the study of Hermite polynomials, whereby we obtain closed-form expressions for $\mathcal{G}_{K,L}(\lambda;x)$ for arbitrary $K$ and $L$, in the form of infinite series involving generalized hypergeometric functions. The basis of our method is provided by certain resummation techniques, supplemented by operational formulae. Our approach also reproduces all the results previously known in the literature.

[1]  N. Obata Minicourse IV: Asymptotic Spectral Analysis of Growing Graphs —— a quantum probability point of view , 2019 .

[2]  Philippe Flajolet,et al.  COMBINATORIAL MODELS OF CREATION{ANNIHILATION , 2010, 1010.0354.

[3]  C. Reutenauer Free Lie Algebras , 1993 .

[4]  Ira M. Gessel,et al.  A Triple Lacunary Generating Function for Hermite Polynomials , 2005, Electron. J. Comb..

[5]  E. Sabia,et al.  Operational Versus Umbral Methods and the Borel Transform , 2015, 1510.01204.

[6]  J. J. Walker Theorems in the Calculus of Operations , 1879 .

[7]  UK,et al.  Boson normal ordering via substitutions and Sheffer-type polynomials , 2005 .

[8]  Giuseppe Dattoli,et al.  Evolution operator equations: Integration with algebraic and finitedifference methods. Applications to physical problems in classical and quantum mechanics and quantum field theory , 1997 .

[9]  Dominique Foata,et al.  Some Hermite polynomial identities and their combinatorics , 1981 .

[10]  D. Babusci,et al.  Lacunary Generating Functions for Laguerre Polynomials , 2013 .

[11]  Giuseppe Dattoli,et al.  Operational rules and arbitrary order Hermite generating functions , 1998 .

[12]  Gérard Henry Edmond Duchamp,et al.  PHYSIQUE COMBINATOIRE I: GROUPES À UN PARAMÈTRE , 2011 .

[13]  F. Trèves Topological vector spaces, distributions and kernels , 1967 .

[14]  P. Appell,et al.  Fonctions hypergéométriques et hypersphériques : polynomes d'Hermite , 1926 .

[15]  G. Dattoli,et al.  Generalized polynomials, operational identities and their applications , 2000 .

[16]  Roderick Wong,et al.  Special Functions and Orthogonal Polynomials , 2016 .

[17]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[18]  Arbitrary-order Hermite generating functions for obtaining arbitrary-order coherent and squeezed states , 1995, quant-ph/9506008.

[19]  Karol A. Penson,et al.  Combinatorics of chemical reaction systems , 2017, 1712.06575.

[20]  Yu. A. Brychkov,et al.  Integrals and series , 1992 .