A crystal structure analysis and magnetic investigation on highly ordered mesoporous Cr2O3.

A series of highly ordered mesoporous Cr(2)O(3) were prepared through the nanocasting pathway from decomposition of chromium(VI) oxide using KIT-6 as a hard template. The effects of the calcination temperature on the crystal structure, textural parameters and magnetic properties of the material were investigated. It was found that with increasing calcination temperature, surface area and pore volume of the mesoporous Cr(2)O(3) decreased slightly. Unpredictably, increasing calcination temperature also influences the lattice parameters of the Cr(2)O(3) crystal, and this rearrangement in the lattice parameter leads to changes in the value of the Néel temperature. A spin-flop transition has been observed at a magnetic field smaller than that of bulk material.

[1]  F. Schüth,et al.  Synthesis of Hard Magnetic Ordered Mesoporous Co3O4/CoFe2O4 Nanocomposites , 2012 .

[2]  F. Schüth,et al.  A strategy for the synthesis of mesostructured metal oxides with lower oxidation states. , 2012, Chemistry.

[3]  Guoxiu Wang,et al.  Highly ordered mesoporous Cr2O3 materials with enhanced performance for gas sensors and lithium ion batteries. , 2012, Chemical communications.

[4]  D. Zhao,et al.  Container effect in nanocasting synthesis of mesoporous metal oxides. , 2011, Journal of the American Chemical Society.

[5]  Ying Wan,et al.  Ordered mesoporous non-oxide materials. , 2011, Chemical Society reviews.

[6]  Claudia Weidenthaler,et al.  Pitfalls in the characterization of nanoporous and nanosized materials. , 2011, Nanoscale.

[7]  Wuzong Zhou,et al.  Crystallographic and magnetic studies of mesoporous eskolaite, Cr2O3 , 2010 .

[8]  F. Schüth,et al.  Decoupling of magnetic core and shell contributions in antiferromagnetic Co3 O4 nanostructures , 2009 .

[9]  Yong‐Sheng Hu,et al.  Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. , 2009, Nano letters.

[10]  W. Schmidt Solid Catalysts on the Nanoscale: Design of Complex Morphologies and Pore Structures , 2009 .

[11]  F. Schüth,et al.  Pseudomorphic transformation of highly ordered mesoporous Co3O4 to CoO via reduction with glycerol. , 2008, Journal of the American Chemical Society.

[12]  H. Troiani,et al.  Size dependence of the magnetic properties of antiferromagnetic Cr 2 O 3 nanoparticles , 2008 .

[13]  H. Zabel,et al.  Evidence for core-shell magnetic behavior in antiferromagnetic Co3O4 nanowires. , 2008, Physical review letters.

[14]  D. Zhao,et al.  Synthesis of Self‐Supported Ordered Mesoporous Cobalt and Chromium Nitrides , 2008 .

[15]  F. Schüth,et al.  Direct imaging of surface topology and pore system of ordered mesoporous silica (MCM-41, SBA-15, and KIT-6) and nanocast metal oxides by high resolution scanning electron microscopy. , 2008, Journal of the American Chemical Society.

[16]  P. Bruce,et al.  Synthesis of ordered mesoporous NiO with crystalline walls and a bimodal pore size distribution. , 2008, Journal of the American Chemical Society.

[17]  F. Schüth,et al.  Synthesis and magnetic investigation of ordered mesoporous two-line ferrihydrite. , 2008, Journal of the American Chemical Society.

[18]  P. Bruce,et al.  Mesoporous Mn2O3 and Mn3O4 with Crystalline Walls , 2007 .

[19]  Wuzong Zhou,et al.  Mesoporous single-crystal Co3O4 templated by cage-containing mesoporous silica. , 2007, Chemical communications.

[20]  C. Bahl,et al.  Experimental and theoretical studies of nanoparticles of antiferromagnetic materials , 2007 .

[21]  C. Binek,et al.  Piezomagnetism in epitaxial Cr2O3 thin films and spintronic applications , 2007 .

[22]  Jixue Li,et al.  Ordered mesoporous copper oxide with crystalline walls. , 2007, Angewandte Chemie.

[23]  F. Kleitz,et al.  Hard templating pathways for the synthesis of nanostructured porous Co₃O₄ , 2007 .

[24]  F. Kleitz,et al.  Exchange anisotropy in nanocasted Co3O4 nanowires. , 2006, Nano letters.

[25]  P. Bruce,et al.  Synthesis of ordered mesoporous Fe3O4 and gamma-Fe2O3 with crystalline walls using post-template reduction/oxidation. , 2006, Journal of the American Chemical Society.

[26]  Wuzong Zhou,et al.  Formation mechanism of porous single-crystal Cr2O3 and Co3O4 templated by mesoporous silica , 2006 .

[27]  Wuzong Zhou,et al.  Growth of porous single-crystal Cr2O3 in a 3-D mesopore system. , 2005, Chemical communications.

[28]  M. Tiemann,et al.  Ordered mesoporous magnesium oxide with high thermal stability synthesized by exotemplating using CMK-3 carbon. , 2005, Journal of the American Chemical Society.

[29]  M. Bañobre‐López,et al.  Evidence of weak ferromagnetism in chromium(III) oxide particles , 2004 .

[30]  S. A. Makhlouf Magnetic properties of Cr2O3 Nanoparticles , 2004 .

[31]  A. Sinha,et al.  Three-dimensional mesoporous chromium oxide: a highly efficient material for the elimination of volatile organic compounds. , 2004, Angewandte Chemie.

[32]  D. Fiorani,et al.  Size dependence of the spin-flop transition in hematite nanoparticles , 2003 .

[33]  T. Ohsuna,et al.  TEM Study on Zeolite Fine Structures: Homework from Cambridge Days , 2003 .

[34]  B. Tu,et al.  General Synthesis of Ordered Crystallized Metal Oxide Nanoarrays Replicated by Microwave‐Digested Mesoporous Silica , 2003 .

[35]  F. Kleitz,et al.  Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. , 2003, Chemical communications.

[36]  R. Ryoo,et al.  Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates. , 2003, Chemical communications.

[37]  D. Cox,et al.  Dehalogenation of 1,1,2-Trichloro-1-fluoroethane over α-Cr2O3 (101̄2) , 2003 .

[38]  M. Bañobre‐López,et al.  Magnetic properties of chromium (III) oxide nanoparticles , 2003 .

[39]  Wuzong Zhou,et al.  Preparation of three-dimensional chromium oxide porous single crystals templated by SBA-15. , 2003, Chemical communications.

[40]  G. Deo,et al.  Oxidative dehydrogenation of propane over Cr2O3/Al2O3 and Cr2O3 catalysts: effects of loading, precursor and surface area , 2002 .

[41]  O. Terasaki,et al.  Template synthesis of asymmetrically mesostructured platinum networks. , 2001, Journal of the American Chemical Society.

[42]  Sang Hoon Joo,et al.  Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation , 1999 .

[43]  Lamber,et al.  Size dependence of the lattice parameter of small palladium particles. , 1995, Physical review. B, Condensed matter.

[44]  Y. Shapira Ultrasonic Behavior near the Spin-Flop Transition of Cr 2 O 3 , 1969 .

[45]  E. Scott,et al.  Antiferromagnetism in a Cr 2 O 3 Crystal , 1956 .

[46]  S. Greenwald Changes in Lattice Constant of Cr2O3 near the Curie Temperature , 1951, Nature.