Intuitionistic Fuzzy Linguistic Quantifiers Based on Intuitionistic Fuzzy-Valued Fuzzy Measures and integrals

In this paper, we generalize Ying's model of linguistic quantifiers [M.S. Ying, Linguistic quantifiers modeled by Sugeno integrals, Artificial Intelligence, 170 (2006) 581-606] to intuitionistic linguistic quantifiers. An intuitionistic linguistic quantifier is represented by a family of intuitionistic fuzzy-valued fuzzy measures and the intuitionistic truth value (the degrees of satisfaction and non-satisfaction) of a quantified proposition is calculated by using intuitionistic fuzzy-valued fuzzy integral. Description of a quantifier by intuitionistic fuzzy-valued fuzzy measures allows us to take into account differences in understanding the meaning of the quantifier by different persons. If the intuitionistic fuzzy linguistic quantifiers are taken to be linguistic fuzzy quantifiers, then our model reduces to Ying's model. Some excellent logical properties of intuitionistic linguistic quantifiers are obtained including a prenex norm form theorem. A simple example is presented to illustrate the use of intuitionistic linguistic quantifiers.

[1]  Etienne E. Kerre,et al.  On the composition of intuitionistic fuzzy relations , 2003, Fuzzy Sets Syst..

[2]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[3]  Vilém Novák,et al.  First-order fuzzy logic , 1987, Stud Logica.

[4]  Daniel Sánchez,et al.  Fuzzy cardinality based evaluation of quantified sentences , 2000, Int. J. Approx. Reason..

[5]  K. Atanassov More on intuitionistic fuzzy sets , 1989 .

[6]  Etienne E. Kerre,et al.  On the relationship between some extensions of fuzzy set theory , 2003, Fuzzy Sets Syst..

[7]  Etienne E. Kerre,et al.  An overview of fuzzy quantifiers. (II). Reasoning and applications , 1998, Fuzzy Sets Syst..

[8]  Adrian I. Ban,et al.  Componentwise decomposition of some lattice-valued fuzzy integrals , 2007, Inf. Sci..

[9]  Mingsheng Ying,et al.  Linguistic quantifiers modeled by Sugeno integrals , 2006, Artif. Intell..

[10]  Ranjit Biswas,et al.  An application of intuitionistic fuzzy sets in medical diagnosis , 2001, Fuzzy Sets Syst..

[11]  L. Zadeh A COMPUTATIONAL APPROACH TO FUZZY QUANTIFIERS IN NATURAL LANGUAGES , 1983 .

[12]  P. Bosc,et al.  Monotonic quantified statements and fuzzy integrals , 1994, NAFIPS/IFIS/NASA '94. Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy Control and Intellige.

[13]  Deng-Feng Li,et al.  Multiattribute decision making models and methods using intuitionistic fuzzy sets , 2005, J. Comput. Syst. Sci..

[14]  R. Yager Families of OWA operators , 1993 .

[15]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[16]  R. Yager Connectives and quantifiers in fuzzy sets , 1991 .

[17]  D. Ralescu Cardinality, quantifiers, and the aggregation of fuzzy criteria , 1995 .

[18]  Yongming Li,et al.  Linguistic quantifiers based on Choquet integrals , 2008, Int. J. Approx. Reason..

[19]  Zhao Bin,et al.  Prenex normal form in linguistic quantifiers modeled by Sugeno integrals , 2008 .

[20]  Ronald R. Yager,et al.  Interpreting linguistically quantified propositions , 1994, Int. J. Intell. Syst..

[21]  Ingo Glöckner Evaluation of quantified propositions in generalized models of fuzzy quantification , 2004, Int. J. Approx. Reason..

[22]  J. Kacprzyk,et al.  Group decision making under intuitionistic fuzzy preference relations , 1998 .

[23]  Zun-Quan Xia,et al.  Multicriteria fuzzy decision-making methods based on intuitionistic fuzzy sets , 2007, J. Comput. Syst. Sci..

[24]  San-Min Wang,et al.  Prenex normal form in linguistic quantifiers modeled by Sugeno integrals , 2008, Fuzzy Sets Syst..

[25]  Senén Barro,et al.  A framework for fuzzy quantification models analysis , 2003, IEEE Trans. Fuzzy Syst..