Recent progress in development of InAs-based interband cascade lasers

Interband cascade (IC) lasers take advantage of the broken band-gap alignment in type-II quantum wells to reuse injected electrons in cascade stages for photon generation with high quantum efficiency, while retaining interband transitions for photon emission without involving fast phonon scattering. As such, the threshold current density can be significantly lowered with high voltage efficiency, resulting in low power consumption. After about 18 years of exploration and development, IC lasers have now been proven to be capable of continuous wave operation at room temperature and above for a wide wavelength range of 2.9 to 5.7 μm in the mid-infrared spectral region. Here, we present our recent progress in InAs-based IC lasers, which use plasmon cladding layers to replace superlattice cladding layers, resulting in improved thermal dissipation and extended lasing wavelengths.

[1]  T. L. Myers,et al.  Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission , 2002 .

[2]  Rui Q. Yang,et al.  Mid-infrared interband cascade lasers at thermoelectric cooler temperatures , 2006 .

[3]  Jerry R. Meyer,et al.  Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices , 2002 .

[4]  Yueming Qiu,et al.  Distributed Feedback Mid-IR Interband Cascade Lasers at Thermoelectric Cooler Temperatures , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  Igor Vurgaftman,et al.  High-power room-temperature continuous-wave mid-infrared interband cascade lasers. , 2012, Optics express.

[6]  J. C. Garcia,et al.  Epitaxially stacked lasers with Esaki junctions: A bipolar cascade laser , 1997 .

[7]  William W. Bewley,et al.  Interband cascade laser emitting at λ=3.75μm in continuous wave above room temperature , 2008 .

[8]  Rui Q. Yang,et al.  Inas-based interband cascade lasers near 6 μm , 2009 .

[9]  William W. Bewley,et al.  Interband Cascade Lasers with Wavelengths Spanning 3.2–4.2 μm , 2009 .

[10]  T. Mishima,et al.  InAs-Based Mid-Infrared Interband Cascade Lasers Near 5.3 $\mu{\rm m}$ , 2012, IEEE Journal of Quantum Electronics.

[11]  Rui Q. Yang,et al.  High-temperature and low-threshold midinfrared interband cascade lasers , 2005 .

[12]  Chul Soo Kim,et al.  Mid-IR Type-II Interband Cascade Lasers , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  William W. Bewley,et al.  Ridge-width dependence of midinfrared interband cascade laser characteristics , 2010 .

[14]  Xavier Marcadet,et al.  Room temperature operation of InAs/AlSb quantum cascade lasers , 2004 .

[15]  V. Gavrilenko,et al.  Nonlinear mode mixing in dual-wavelength semiconductor lasers with tunnel junctions , 2007 .

[16]  Rui Q. Yang Infrared laser based on intersubband transitions in quantum wells , 1995 .

[17]  M. Beck,et al.  Bound-to-continuum and two-phonon resonance, quantum-cascade lasers for high duty cycle, high-temperature operation , 2002 .

[19]  Rui Q. Yang Mid-infrared interband cascade lasers based on type-II heterostructures , 1999 .

[20]  Hideo Ohno,et al.  Mid-infrared InAs∕AlGaSb superlattice quantum-cascade lasers , 2005 .

[21]  Zhaobing Tian,et al.  Plasmon-Waveguide Interband Cascade Lasers Near 7.5 $\mu$ m , 2009, IEEE Photonics Technology Letters.

[22]  Rui Q. Yang,et al.  InAs-based interband cascade lasers with emission wavelength at 10.4 μm , 2012 .

[23]  P. Mahaffy,et al.  Determining the Local Abundance of Martian Methane and its 13-C/l2-C and D/H Isotopic Ratios for Comparison with Related Gas and Soil Analysis on the 2011 Mars Science Laboratory (MSL) Mission , 2011 .

[24]  Rui Q. Yang,et al.  Type-II and type-I interband cascade lasers , 1996 .

[25]  Igor Vurgaftman,et al.  Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7-5.6 μm. , 2012, Optics express.

[26]  G. Ru,et al.  InGaAsP-InP dual-wavelength bipolar cascade lasers , 2006, IEEE Photonics Technology Letters.

[27]  R.Q. Yang,et al.  Mid-IR interband cascade lasers , 1997, Conference Proceedings. LEOS '97. 10th Annual Meeting IEEE Lasers and Electro-Optics Society 1997 Annual Meeting.

[28]  Rui Q. Yang,et al.  Type-II interband quantum cascade laser at 3.8 /spl mu/m , 1997 .

[29]  I. Vurgaftman,et al.  High-power/low-threshold type-II interband cascade mid-IR laser-design and modeling , 1997, IEEE Photonics Technology Letters.

[30]  I. Vurgaftman,et al.  Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption. , 2011, Nature communications.

[31]  S. Pei,et al.  THERMAL CONDUCTIVITY OF InAs/AlSb SUPERLATTICES , 2001, Proceeding of Heat Transfer and Transport Phenomena in Microscale.

[32]  Rui Q. Yang,et al.  Mid-infrared type-II interband cascade lasers , 2002 .

[33]  Jerry R. Meyer,et al.  Type‐II quantum‐well lasers for the mid‐wavelength infrared , 1995 .

[34]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[35]  Hideo Ohno,et al.  An InAs-Based Intersubband Quantum Cascade Laser , 2002 .

[36]  Rui Q. Yang,et al.  InAs-based plasmon-waveguide interband cascade lasers , 2010, OPTO.

[37]  Carlo Sirtori,et al.  Continuous wave operation of midinfrared (7.4–8.6 μm) quantum cascade lasers up to 110 K temperature , 1996 .