On a decision procedure for quantified linear programs

Quantified linear programming is the problem of checking whether a polyhedron specified by a linear system of inequalities is non-empty, with respect to a specified quantifier string. Quantified linear programming subsumes traditional linear programming, since in traditional linear programming, all the program variables are existentially quantified (implicitly), whereas, in quantified linear programming, a program variable may be existentially quantified or universally quantified over a continuous range. In this paper, the term linear programming is used to describe the problem of checking whether a system of linear inequalities has a feasible solution. On account of the alternation of quantifiers in the specification of a quantified linear program (QLP), this problem is non-trivial. QLPs represent a class of declarative constraint logic programs (CLPs) that are extremely rich in their expressive power. The complexity of quantified linear programming for arbitrary constraint matrices is unknown. In this paper, we show that polynomial time decision procedures exist for the case in which the constraint matrix satisfies certain structural properties. We also provide a taxonomy of quantified linear programs, based on the structure of the quantifier string and discuss the computational complexities of the constituent classes.

[1]  Richard Gerber,et al.  Parametric Dispatching of Hard Real-Time Tasks , 1995, IEEE Trans. Computers.

[2]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[3]  V. Chandru,et al.  Optimization Methods for Logical Inference , 1999 .

[4]  Volker Weispfenning,et al.  Quantifier Elimination for Real Algebra — the Quadratic Case and Beyond , 1997, Applicable Algebra in Engineering, Communication and Computing.

[5]  George S. Avrunin,et al.  Using integer programming to verify general safety and liveness properties , 1995, Formal Methods Syst. Des..

[6]  Joseph Naor,et al.  Simple and Fast Algorithms for Linear and Integer Programs With Two Variables per Inequality , 1994, SIAM J. Comput..

[7]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[8]  Marco Schaerf,et al.  Experimental Analysis of the Computational Cost of Evaluating Quantified Boolean Formulae , 1997, AI*IA.

[9]  Michael J. Maher,et al.  On Fourier's algorithm for linear arithmetic constraints , 1992, Journal of Automated Reasoning.

[10]  Seonho Choi Dynamic time-based scheduling for hard real-time systems , 1998 .

[11]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[12]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[13]  Mikhail J. Atallah,et al.  Algorithms and Theory of Computation Handbook , 2009, Chapman & Hall/CRC Applied Algorithms and Data Structures series.

[14]  Jean-Louis Lassez,et al.  Fourier Algorithm Revisited , 1990, ALP.

[15]  K. Subramani,et al.  A Specification Framework for Real-Time Scheduling , 2002, SOFSEM.

[16]  Frédéric Goualard,et al.  Universally Quantified Interval Constraints , 2000, CP.

[17]  Lane A. Hemaspaandra,et al.  The Complexity Theory Companion , 2002, Texts in Theoretical Computer Science An EATCS Series.

[18]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[19]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[20]  Omar Ben-Ayed,et al.  Bilevel linear programming , 1993, Comput. Oper. Res..

[21]  K. Subramani,et al.  Duality in the parametric polytope and its applications to a scheduling problem , 2000 .

[22]  Stefan Ratschan,et al.  Safety Verification of Hybrid Systems by Constraint Propagation Based Abstraction Refinement , 2005, HSCC.

[23]  George B. Dantzig,et al.  Fourier-Motzkin Elimination and Its Dual , 1973, J. Comb. Theory A.

[24]  G. Sacks A DECISION METHOD FOR ELEMENTARY ALGEBRA AND GEOMETRY , 2003 .

[25]  Paul H. Calamai,et al.  Bilevel and multilevel programming: A bibliography review , 1994, J. Glob. Optim..

[26]  Robert E. Tarjan,et al.  A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas , 1979, Inf. Process. Lett..

[27]  Satish K. Tripathi,et al.  The MARUTI hard real-time operating system , 1989, [1989] Proceedings. The Fourth Israel Conference on Computer Systems and Software Engineering.

[28]  M. Saksena,et al.  Parametric scheduling for hard real-time systems , 1994 .

[29]  Hélène Kirchner,et al.  Algebraic and Logic Programming, Second International Conference, Nancy, France, October 1-3, 1990, Proceedings , 1990, ALP.

[30]  S. Vavasis Nonlinear optimization: complexity issues , 1991 .

[31]  Pravin M. Vaidya,et al.  An algorithm for linear programming which requires O(((m+n)n2+(m+n)1.5n)L) arithmetic operations , 1990, Math. Program..

[32]  John N. Hooker,et al.  Logic-Based Methods for Optimization , 1994, PPCP.

[33]  Thi-Bich-Hanh Dao,et al.  Expressiveness of Full First-Order Constraints in the Algebra of Finite or Infinite Trees , 2000, Constraints.

[34]  Marco Schaerf,et al.  An Algorithm to Evaluate Quantified Boolean Formulae , 1998, AAAI/IAAI.

[35]  K. Subramani,et al.  Parametric Scheduling - Algorithms and Complexity , 2001, HiPC.

[36]  Vijay Chandru,et al.  Optimization Methods for Logical Inference: Chandru/Optimization , 1999 .

[37]  Ashok K. Agrawala,et al.  Dynamic Dispatching of Cyclic Real-Time Tasks with Relative Timing Constraints , 2000, Real-Time Systems.

[38]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[39]  Rüdiger Loos,et al.  Applying Linear Quantifier Elimination , 1993, Comput. J..

[40]  M. R. Rao,et al.  175 Years of linear programming , 1999 .

[41]  Frédéric Benhamou,et al.  Applying Interval Arithmetic to Real, Integer, and Boolean Constraints , 1997, J. Log. Program..

[42]  B. Donald,et al.  Symbolic and Numerical Computation for Artificial Intelligence , 1997 .

[43]  Stefan Ratschan,et al.  Continuous First-Order Constraint Satisfaction , 2002, AISC.