Stochastic Navier-Stokes equations for turbulent flows in critical spaces

In this paper we study the stochastic Navier-Stokes equations on the d-dimensional torus with gradient noise, which arises in the study of turbulent flows. Under very weak smoothness assumptions on the data we prove local well-posedness in the critical case B d/q−1 q,p for q ∈ [2, 2d) and p large enough. Moreover, we obtain new regularization results for solutions, and new blow-up criteria which can be seen as a stochastic version of the Serrin blow-up criteria. The latter is used to prove global well-posedness with high probability for small initial data in critical spaces in any dimensions d ≥ 2. Moreover, for d = 2 we obtain new global well-posedness results and regularization phenomena, which unify and extend several earlier results.

[1]  M. Capinski,et al.  On the existence of a solution to stochastic Navier—Stokes equations , 2001 .

[2]  W. Arendt Chapter 1 Semigroups and evolution equations: Functional calculus, regularity and kernel estimates , 2002 .

[3]  Atsushi Inoue,et al.  On a new derivation of the Navier-Stokes equation , 1979 .

[4]  Hiroshi Fujita,et al.  On the Navier-Stokes initial value problem. I , 1964 .

[5]  Recent results on mathematical and statistical hydrodynamics , 2000 .

[6]  Isabelle Gallagher,et al.  On Global Infinite Energy Solutions¶to the Navier-Stokes Equations¶in Two Dimensions , 2002 .

[7]  F. Flandoli Random perturbation of PDEs and fluid dynamic models , 2011 .

[8]  B. L. Rozovskii,et al.  Global L2-solutions of stochastic Navier–Stokes equations , 2005 .

[9]  Mark Veraar,et al.  On the trace embedding and its applications to evolution equations , 2021 .

[10]  Weihua Wang Global existence and analyticity of mild solutions for the stochastic Navier–Stokes–Coriolis equations in Besov spaces , 2020 .

[11]  Z. Brzeźniak,et al.  A note on stochastic Navier–Stokes equations with not regular multiplicative noise , 2015, 1510.03561.

[12]  Alfred P. Sloanfellowship Well-posedness for the Navier-stokes Equations , 1999 .

[13]  Boris Rozovskii,et al.  Stochastic Navier-Stokes Equations for Turbulent Flows , 2004, SIAM J. Math. Anal..

[14]  R. Mikulevicius,et al.  On the Cauchy Problem for Stochastic Stokes Equations , 2002, SIAM J. Math. Anal..

[15]  T. Tao Quantitative bounds for critically bounded solutions to the Navier-Stokes equations , 2019, 1908.04958.

[16]  Massimo Vergassola,et al.  Phase transition in the passive scalar advection , 1998 .

[17]  Local and global strong solutions to the stochastic incompressible Navier-Stokes equations in critical Besov space , 2017, 1710.11336.

[18]  M. Röckner,et al.  Stochastic Partial Differential Equations: An Introduction , 2015 .

[19]  Robert H. Kraichnan,et al.  Small‐Scale Structure of a Scalar Field Convected by Turbulence , 1968 .

[20]  M. Cannone Harmonic Analysis Tools for Solving the Incompressible Navier–Stokes Equations , 2022 .

[21]  Dariusz Gatarek,et al.  Martingale and stationary solutions for stochastic Navier-Stokes equations , 1995 .

[22]  M. Veraar,et al.  Stability properties of stochastic maximal L-regularity , 2019, 1901.08408.

[23]  P. Chow Stochastic partial differential equations in turbulence related problems , 1978 .

[24]  A. Bensoussan,et al.  Equations stochastiques du type Navier-Stokes , 1973 .

[25]  I. Kukavica,et al.  Global existence for the stochastic Navier–Stokes equations with small $$L^{p}$$ L p  data , 2021, Stochastics and Partial Differential Equations: Analysis and Computations.

[26]  Z. Brze'zniak,et al.  Existence of a martingale solution of the stochastic Navier-Stokes equations in unbounded 2D and 3D-domains , 2012, 1208.3386.

[27]  G. Simonett,et al.  Critical spaces for quasilinear parabolic evolution equations and applications , 2017, 1708.08550.

[28]  M. Veraar,et al.  Stochastic Integration in Banach Spaces - a Survey , 2013, 1304.7575.

[29]  Franco Flandoli,et al.  STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND TURBULENCE , 1991 .

[30]  F. Flandoli,et al.  High mode transport noise improves vorticity blow-up control in 3D Navier–Stokes equations , 2019, Probability Theory and Related Fields.

[31]  B. Rozovskii,et al.  Global L 2-solutions of Stochastic Navier-Stokes Equations , 2008 .

[32]  H. Triebel,et al.  Topics in Fourier Analysis and Function Spaces , 1987 .

[33]  R. Mikulevicius On Strong H21-Solutions of Stochastic Navier-Stokes Equation in a Bounded Domain , 2009, SIAM J. Math. Anal..

[34]  B. Rozovskii,et al.  Martingale problems for stochastic PDE’s , 1999 .

[35]  P. Lemarié–Rieusset The Navier-Stokes Problem in the 21st Century , 2016 .

[36]  Martin Ondreját,et al.  Uniqueness for stochastic evolution equations in Banach spaces , 2004 .

[37]  F. Flandoli,et al.  Stochastic Navier-stokes equations with multiplicative noise , 1992 .

[38]  Franco Flandoli,et al.  An Introduction to 3D Stochastic Fluid Dynamics , 2008 .

[39]  Franco Flandoli,et al.  Eddy heat exchange at the boundary under white noise turbulence , 2021, Philosophical Transactions of the Royal Society A.

[40]  Krzysztof Gawedzki,et al.  Universality in turbulence: An exactly soluble model , 1995 .

[41]  Jan van Neerven,et al.  Analysis in Banach Spaces , 2023, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics.

[42]  J. Leahy,et al.  On the Navier–Stokes equation perturbed by rough transport noise , 2017, Journal of Evolution Equations.

[43]  R. Kraichnan,et al.  Anomalous scaling of a randomly advected passive scalar. , 1994, Physical review letters.

[44]  2D Navier-Stokes equation in Besov spaces of negative order , 2006, math/0612024.

[45]  Jan Pruess,et al.  On Critical Spaces for the Navier–Stokes Equations , 2017, 1703.08714.

[46]  H. Triebel Local Function Spaces, Heat and Navier-stokes Equations , 2013 .

[47]  Mark Veraar,et al.  Stochastic maximal $L^p(L^q)$-regularity for second order systems with periodic boundary conditions , 2021 .

[48]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[49]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[50]  F. Flandoli A Stochastic View over the Open Problem of Well-posedness for the 3D Navier–Stokes Equations , 2015 .

[51]  W. Sickel,et al.  Composition operators on Lizorkin–Triebel spaces , 2010 .

[52]  J. Leahy,et al.  On a rough perturbation of the Navier–Stokes system and its vorticity formulation , 2019, The Annals of Applied Probability.