Stochastic Navier-Stokes equations for turbulent flows in critical spaces
暂无分享,去创建一个
[1] M. Capinski,et al. On the existence of a solution to stochastic Navier—Stokes equations , 2001 .
[2] W. Arendt. Chapter 1 Semigroups and evolution equations: Functional calculus, regularity and kernel estimates , 2002 .
[3] Atsushi Inoue,et al. On a new derivation of the Navier-Stokes equation , 1979 .
[4] Hiroshi Fujita,et al. On the Navier-Stokes initial value problem. I , 1964 .
[5] Recent results on mathematical and statistical hydrodynamics , 2000 .
[6] Isabelle Gallagher,et al. On Global Infinite Energy Solutions¶to the Navier-Stokes Equations¶in Two Dimensions , 2002 .
[7] F. Flandoli. Random perturbation of PDEs and fluid dynamic models , 2011 .
[8] B. L. Rozovskii,et al. Global L2-solutions of stochastic Navier–Stokes equations , 2005 .
[9] Mark Veraar,et al. On the trace embedding and its applications to evolution equations , 2021 .
[10] Weihua Wang. Global existence and analyticity of mild solutions for the stochastic Navier–Stokes–Coriolis equations in Besov spaces , 2020 .
[11] Z. Brzeźniak,et al. A note on stochastic Navier–Stokes equations with not regular multiplicative noise , 2015, 1510.03561.
[12] Alfred P. Sloanfellowship. Well-posedness for the Navier-stokes Equations , 1999 .
[13] Boris Rozovskii,et al. Stochastic Navier-Stokes Equations for Turbulent Flows , 2004, SIAM J. Math. Anal..
[14] R. Mikulevicius,et al. On the Cauchy Problem for Stochastic Stokes Equations , 2002, SIAM J. Math. Anal..
[15] T. Tao. Quantitative bounds for critically bounded solutions to the Navier-Stokes equations , 2019, 1908.04958.
[16] Massimo Vergassola,et al. Phase transition in the passive scalar advection , 1998 .
[17] Local and global strong solutions to the stochastic incompressible Navier-Stokes equations in critical Besov space , 2017, 1710.11336.
[18] M. Röckner,et al. Stochastic Partial Differential Equations: An Introduction , 2015 .
[19] Robert H. Kraichnan,et al. Small‐Scale Structure of a Scalar Field Convected by Turbulence , 1968 .
[20] M. Cannone. Harmonic Analysis Tools for Solving the Incompressible Navier–Stokes Equations , 2022 .
[21] Dariusz Gatarek,et al. Martingale and stationary solutions for stochastic Navier-Stokes equations , 1995 .
[22] M. Veraar,et al. Stability properties of stochastic maximal L-regularity , 2019, 1901.08408.
[23] P. Chow. Stochastic partial differential equations in turbulence related problems , 1978 .
[24] A. Bensoussan,et al. Equations stochastiques du type Navier-Stokes , 1973 .
[25] I. Kukavica,et al. Global existence for the stochastic Navier–Stokes equations with small $$L^{p}$$ L p data , 2021, Stochastics and Partial Differential Equations: Analysis and Computations.
[26] Z. Brze'zniak,et al. Existence of a martingale solution of the stochastic Navier-Stokes equations in unbounded 2D and 3D-domains , 2012, 1208.3386.
[27] G. Simonett,et al. Critical spaces for quasilinear parabolic evolution equations and applications , 2017, 1708.08550.
[28] M. Veraar,et al. Stochastic Integration in Banach Spaces - a Survey , 2013, 1304.7575.
[29] Franco Flandoli,et al. STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND TURBULENCE , 1991 .
[30] F. Flandoli,et al. High mode transport noise improves vorticity blow-up control in 3D Navier–Stokes equations , 2019, Probability Theory and Related Fields.
[31] B. Rozovskii,et al. Global L 2-solutions of Stochastic Navier-Stokes Equations , 2008 .
[32] H. Triebel,et al. Topics in Fourier Analysis and Function Spaces , 1987 .
[33] R. Mikulevicius. On Strong H21-Solutions of Stochastic Navier-Stokes Equation in a Bounded Domain , 2009, SIAM J. Math. Anal..
[34] B. Rozovskii,et al. Martingale problems for stochastic PDE’s , 1999 .
[35] P. Lemarié–Rieusset. The Navier-Stokes Problem in the 21st Century , 2016 .
[36] Martin Ondreját,et al. Uniqueness for stochastic evolution equations in Banach spaces , 2004 .
[37] F. Flandoli,et al. Stochastic Navier-stokes equations with multiplicative noise , 1992 .
[38] Franco Flandoli,et al. An Introduction to 3D Stochastic Fluid Dynamics , 2008 .
[39] Franco Flandoli,et al. Eddy heat exchange at the boundary under white noise turbulence , 2021, Philosophical Transactions of the Royal Society A.
[40] Krzysztof Gawedzki,et al. Universality in turbulence: An exactly soluble model , 1995 .
[41] Jan van Neerven,et al. Analysis in Banach Spaces , 2023, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics.
[42] J. Leahy,et al. On the Navier–Stokes equation perturbed by rough transport noise , 2017, Journal of Evolution Equations.
[43] R. Kraichnan,et al. Anomalous scaling of a randomly advected passive scalar. , 1994, Physical review letters.
[44] 2D Navier-Stokes equation in Besov spaces of negative order , 2006, math/0612024.
[45] Jan Pruess,et al. On Critical Spaces for the Navier–Stokes Equations , 2017, 1703.08714.
[46] H. Triebel. Local Function Spaces, Heat and Navier-stokes Equations , 2013 .
[47] Mark Veraar,et al. Stochastic maximal $L^p(L^q)$-regularity for second order systems with periodic boundary conditions , 2021 .
[48] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[49] Jöran Bergh,et al. Interpolation Spaces: An Introduction , 2011 .
[50] F. Flandoli. A Stochastic View over the Open Problem of Well-posedness for the 3D Navier–Stokes Equations , 2015 .
[51] W. Sickel,et al. Composition operators on Lizorkin–Triebel spaces , 2010 .
[52] J. Leahy,et al. On a rough perturbation of the Navier–Stokes system and its vorticity formulation , 2019, The Annals of Applied Probability.