Flexion measurement in simulations of Hubble Space Telescope data.

We present a simulation analysis of weak gravitational lensing flexion and shear measurement using shapelet decomposition, and identify differences between flexion and shear measurement noise in deep survey data. Taking models of galaxies from the Hubble Space Telescope Ultra Deep Field (HUDF) and applying a correction for the HUDF point spread function, we generate lensed simulations of deep, optical imaging data from Hubble's Advanced Camera for Surveys, with realistic galaxy morphologies. We find that flexion and shear estimates differ in our measurement pipeline: whereas intrinsic galaxy shape is typically the dominant contribution to noise in shear estimates, pixel noise due to finite photon counts and detector read noise is a major contributor to uncertainty in flexion estimates, across a broad range of galaxy signal-to-noise. This pixel noise also increases more rapidly as galaxy signal-to-noise decreases than is found for shear estimates. We provide simple power-law fitting functions for this behaviour, for both flexion and shear, allowing the effect to be properly accounted for in future forecasts for flexion measurement. Using the simulations, we also quantify the systematic biases of our shapelet flexion and shear measurement pipeline for deep Hubble data sets such as Galaxy Evolution from Morphology and SEDs, Space Telescope A901/902 Galaxy Evolution Survey or Cosmic Evolution Survey. Flexion measurement biases are found to be significant but consistent with previous studies.

[1]  T. Broadhurst,et al.  A Method for Weak Lensing Observations , 1994, astro-ph/9411005.

[2]  A. Leonard,et al.  New constraints on the complex mass substructure in Abell 1689 from gravitational flexion , 2010, 1009.1018.

[3]  H. Hoekstra,et al.  The impact of high spatial frequency atmospheric distortions on weak-lensing measurements , 2011, 1110.4913.

[4]  David A. Green,et al.  STAGES: the Space Telescope A901/2 Galaxy Evolution Survey , 2008, 0811.3890.

[5]  Yannick Mellier,et al.  CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments , 2013, 1303.1808.

[6]  G. M. Bernstein,et al.  Shapes and Shears, Stars and Smears: Optimal Measurements for Weak Lensing , 2001 .

[7]  D. Bacon,et al.  Galaxy-Galaxy Flexion: Weak Lensing to Second Order , 2004, astro-ph/0406376.

[8]  Yannick Mellier,et al.  Cosmological constraints from the 100-deg2 weak-lensing survey , 2007 .

[9]  T. Schrabback,et al.  Cosmic shear analysis of archival HST/ACS data. I. Comparison of early ACS pure parallel data to the , 2006, astro-ph/0606611.

[10]  Shear–flexion cross-talk in weak-lensing measurements , 2011, 1107.3920.

[11]  Claude Brezinski,et al.  Numerical recipes in Fortran (The art of scientific computing) : W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Cambridge Univ. Press, Cambridge, 2nd ed., 1992. 963 pp., US$49.95, ISBN 0-521-43064-X.☆ , 1993 .

[12]  John E. Krist,et al.  On-orbit alignment and imaging performance of the HST advanced camera for surveys , 2003, SPIE Astronomical Telescopes + Instrumentation.

[13]  Alexie Leauthaud,et al.  Precision simulation of ground-based lensing data using observations from space , 2011, 1107.4629.

[14]  Marina Shmakova,et al.  Higher moments in weak gravitational lensing and dark matter structures , 2005 .

[15]  M. Bartelmann,et al.  Weak gravitational lensing with deimos , 2010, 1008.1076.

[16]  R. Ellis,et al.  Dark matter maps reveal cosmic scaffolding , 2007, Nature.

[17]  M. Bartelmann,et al.  Weak gravitational lensing , 2016, Scholarpedia.

[18]  R. Ellis,et al.  The Shear TEsting Programme 2: Factors affecting high precision weak lensing analyses , 2006, astro-ph/0608643.

[19]  M. Bartelmann,et al.  Biases in, and corrections to, KSB shear measurements , 2010, 1006.2470.

[20]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[21]  S. Harmeling,et al.  Image analysis for cosmology: results from the GREAT10 Galaxy Challenge , 2012, 1202.5254.

[22]  Adrienne Leonard,et al.  Gravitational Shear, Flexion, and Strong Lensing in Abell 1689 , 2007 .

[23]  S. Paulin-Henriksson,et al.  Optimal PSF modelling for weak lensing : complexity and sparsity , 2009, 0901.3557.

[24]  H. Hoekstra,et al.  Weak Gravitational Lensing and Its Cosmological Applications , 2008, 0805.0139.

[25]  Lensing Signals in the Hubble Ultra Deep Field Using All Second-Order Shape Deformations , 2006, astro-ph/0607007.

[26]  Massimo Stiavelli,et al.  The Hubble Ultra Deep Field , 2003, astro-ph/0607632.

[27]  Measuring Flexion , 2006, astro-ph/0607602.

[28]  Massimo Viola,et al.  Means of confusion: how pixel noise affects shear estimates for weak gravitational lensing , 2012, 1204.5147.

[29]  G. Arfken,et al.  Mathematical methods for physicists 6th ed. , 1996 .

[30]  B. T. P. Rowe,et al.  Weak gravitational flexion , 2006 .

[31]  M. H. Bretherton,et al.  Statistics in Theory and Practice , 1966 .

[32]  H. Hoekstra,et al.  The Shear Testing Programme – I. Weak lensing analysis of simulated ground-based observations , 2005, astro-ph/0506112.

[33]  R. Massey,et al.  IMAGE ANALYSIS FOR COSMOLOGY: RESULTS FROM THE GREAT10 STAR CHALLENGE , 2012, 1210.1979.

[34]  H. Hoekstra,et al.  CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey , 2012, 1210.0032.

[35]  H. Wyld,et al.  Mathematical methods for physics / H.W. Wyld , 1976 .

[36]  Y. Mellier,et al.  The dark matter environment of the Abell 901/902 supercluster: a weak lensing analysis of the HST STAGES survey , 2008, 0801.1156.

[37]  H. Hoekstra,et al.  Bayesian galaxy shape measurement for weak lensing surveys – III. Application to the Canada–France–Hawaii Telescope Lensing Survey , 2012, 1210.8201.

[38]  Adam Amara,et al.  Systematic bias in cosmic shear: extending the Fisher matrix , 2007, 0710.5171.

[39]  Cea,et al.  Weak Gravitational Lensing with COSMOS: Galaxy Selection and Shape Measurements , 2007, astro-ph/0702359.

[40]  Yuki Okura,et al.  A New Measure for Weak-Lensing Flexion , 2006, astro-ph/0607288.

[41]  Massimo Stiavelli,et al.  WFPC2 Observations of the Hubble Deep Field South , 2000, astro-ph/0010245.

[42]  G. A. Luppino,et al.  Detection of Weak Lensing by a Cluster of Galaxies at z = 0.83 , 1996, astro-ph/9601194.

[43]  A. S. Fruchter,et al.  Drizzle: A Method for the Linear Reconstruction of Undersampled Images , 1998 .

[44]  M. Shmakova,et al.  Observation of Small-Scale Structure Using Sextupole Lensing , 2005, astro-ph/0504200.

[45]  G. Bernstein,et al.  Shear Recovery Accuracy in Weak-Lensing Analysis with the Elliptical Gauss-Laguerre Method , 2006, astro-ph/0607062.

[46]  T. Kitching,et al.  Bayesian galaxy shape measurement for weak lensing surveys – I. Methodology and a fast-fitting algorithm , 2007, 0708.2340.

[47]  Robert Lupton,et al.  Statistics in Theory and Practice , 2020 .

[48]  Adam Amara,et al.  Noise bias in weak lensing shape measurements , 2012, 1203.5050.

[49]  Alexander S. Szalay,et al.  Galaxy–galaxy weak lensing in the Sloan Digital Sky Survey: intrinsic alignments and shear calibration errors , 2004 .

[50]  L. Miller,et al.  CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey – imaging data and catalogue products , 2012, 1210.0032.

[51]  H. Hoekstra,et al.  Weak Lensing Analysis of Cl 1358+62 Using Hubble Space Telescope Observations , 1998 .

[52]  Christopher Hirata,et al.  OPTIMAL LINEAR IMAGE COMBINATION , 2011, 1105.2852.

[53]  Alexandre Refregier,et al.  Image simulation with shapelets , 2003, astro-ph/0301449.

[54]  Alexandre Refregier,et al.  Shapelets — II. A method for weak lensing measurements , 2003 .

[55]  B. Rowe Improving PSF modelling for weak gravitational lensing using new methods in model selection , 2009, 0904.3056.

[56]  Weak Lensing Measurements: A Revisited Method and Application toHubble Space Telescope Images , 1999, astro-ph/9905090.

[57]  Yannick Mellier,et al.  Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS , 2009, 0911.0053.

[58]  M. Bethge,et al.  Gravitational Lensing Accuracy Testing 2010 (GREAT10) Challenge Handbook , 2010, 1009.0779.

[59]  Yannick Mellier,et al.  The Stability of the Point-Spread Function of the Advanced Camera for Surveys on the Hubble Space Telescope and Implications for Weak Gravitational Lensing* , 2007 .

[60]  Chien Y. Peng,et al.  GEMS: Galaxy Evolution from Morphologies and SEDs , 2004 .

[61]  M. Meneghetti,et al.  Reliable shapelet image analysis , 2006, astro-ph/0608369.

[62]  John Shawe-Taylor,et al.  HANDBOOK FOR THE GREAT08 CHALLENGE: AN IMAGE ANALYSIS COMPETITION FOR COSMOLOGICAL LENSING , 2008, 0802.1214.

[63]  M. Bethge,et al.  Results of the GREAT08 Challenge?: an image analysis competition for cosmological lensing: Results o , 2009, 0908.0945.

[64]  H. Rix,et al.  Cosmological weak lensing with the HST GEMS survey , 2004, astro-ph/0411324.

[65]  Yannick Mellier,et al.  CFHTLenS tomographic weak lensing: quantifying accurate redshift distributions , 2012, 1212.3327.

[66]  R. Massey,et al.  Polar Shapelets , 2004, astro-ph/0408445.

[67]  Konrad Kuijken,et al.  Probing galaxy dark matter haloes in COSMOS with weak lensing flexion , 2010, 1011.3041.

[68]  H. Hoekstra,et al.  CFHTLenS: mapping the large-scale structure with gravitational lensing , 2013, 1303.1806.

[69]  Stefan Hilbert,et al.  COSMIC SHEAR RESULTS FROM THE DEEP LENS SURVEY. I. JOINT CONSTRAINTS ON ΩM AND σ8 WITH A TWO-DIMENSIONAL ANALYSIS , 2012, 1210.2732.

[70]  Henk Hoekstra The effect of imperfect models of point spread function anisotropy on cosmic shear measurements , 2004 .

[71]  Gary M. Bernstein,et al.  Shape measurement biases from underfitting and ellipticity gradients , 2010, 1001.2333.

[72]  K. Umetsu,et al.  A Method for Weak-Lensing Flexion Analysis by the HOLICs Moment Approach , 2007, 0710.2262.

[73]  M. Bartelmann,et al.  Deconvolution with shapelets , 2008, 0806.4042.

[74]  S. Bridle,et al.  Limitations of model-fitting methods for lensing shear estimation , 2009, 0905.4801.

[75]  P. Schneider,et al.  Weak lensing goes bananas: what flexion really measures , 2007, 0709.1003.

[76]  Andrea Grazian,et al.  Realistic simulations of gravitational lensing by galaxy clusters: extracting arc parameters from mock DUNE images , 2007, 0711.3418.

[77]  Yannick Mellier,et al.  CFHTLenS: combined probe cosmological model comparison using 2D weak gravitational lensing , 2012, 1212.3338.

[78]  A. Amara,et al.  Point spread function calibration requirements for dark energy from cosmic shear , 2007, 0711.4886.

[79]  A. Réfrégier Shapelets: I. a method for image analysis , 2001, astro-ph/0105178.

[80]  H. Hoekstra,et al.  Very weak lensing in the CFHTLS Wide: Cosmology from cosmic shear in the linear regime , 2007, 0712.0884.

[81]  L. Guzzo,et al.  The Cosmic Evolution Survey (COSMOS): Overview* , 2006, astro-ph/0612305.

[82]  Michael Hirsch,et al.  Measurement and calibration of noise bias in weak lensing galaxy shape estimation , 2012, 1203.5049.

[83]  Nick Kaiser A New Shear Estimator for Weak-Lensing Observations , 2000 .

[84]  Shears from shapelets , 2005, astro-ph/0601011.

[85]  H. Rix,et al.  GEMS Survey Data and Catalog , 2005, astro-ph/0510782.

[86]  Y. Mellier,et al.  First Cosmic Shear Results from the Canada-France-Hawaii Telescope Wide Synoptic Legacy Survey , 2006 .