Complete Cycle Embedding in Crossed Cubes with Two-Disjoint-Cycle-Cover Pancyclicity

[1]  Jimmy J. M. Tan,et al.  On the Fault-Tolerant Hamiltonicity of Faulty Crossed Cubes , 2002, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[2]  Li-Yen Hsu,et al.  2-Disjoint-path-coverable panconnectedness of crossed cubes , 2015, The Journal of Supercomputing.

[3]  Kemal Efe A Variation on the Hypercube with Lower Diameter , 1991, IEEE Trans. Computers.

[4]  Fan Jian BC Interconnection Networks and Their Properties , 2003 .

[5]  Kemal Efe,et al.  Topological Properties of the Crossed Cube Architecture , 1994, Parallel Comput..

[6]  Xiaohua Jia,et al.  Node-pancyclicity and edge-pancyclicity of crossed cubes , 2005, Inf. Process. Lett..

[7]  Priyalal Kulasinghe,et al.  Connectivity of the Crossed Cube , 1997, Inf. Process. Lett..

[8]  Lih-Hsing Hsu,et al.  Edge Congestion and Topological Properties of Crossed Cubes , 2000, IEEE Trans. Parallel Distributed Syst..

[9]  Xie-Bin Chen Edge-fault-tolerant panconnectivity and edge-pancyclicity of the complete graph , 2013, Inf. Sci..

[10]  David J. Evans,et al.  The locally twisted cubes , 2005, Int. J. Comput. Math..

[11]  Krishnan Padmanabhan,et al.  the Twisted Cube Topology for Multiprocessors: A Study in Network Asymmetry , 1991, J. Parallel Distributed Comput..

[12]  Sun-Yuan Hsieh,et al.  Pancyclicity of Matching Composition Networks under the Conditional Fault Model , 2012, IEEE Transactions on Computers.

[13]  Xiaohua Jia,et al.  Complete path embeddings in crossed cubes , 2006, Inf. Sci..

[14]  P. S. Nagendra Rao,et al.  A class of hypercube-like networks , 1993, Proceedings of 1993 5th IEEE Symposium on Parallel and Distributed Processing.

[15]  M. H. Schultz,et al.  Topological properties of hypercubes , 1988, IEEE Trans. Computers.

[16]  Lutz Volkmann,et al.  Vertex pancyclic graphs , 2002, Discret. Appl. Math..

[17]  Junming Xu Topological Structure and Analysis of Interconnection Networks , 2002, Network Theory and Applications.

[18]  George R. T. Hendry,et al.  Extending cycles in graphs , 1990, Discret. Math..

[19]  Dyi-Rong Duh,et al.  (n-3)-edge-fault-tolerant Weak-pancyclicity of (n, K)-star Graphs , 2014, Theor. Comput. Sci..

[20]  Sajal K. Das,et al.  Book Review: Introduction to Parallel Algorithms and Architectures : Arrays, Trees, Hypercubes by F. T. Leighton (Morgan Kauffman Pub, 1992) , 1992, SIGA.

[21]  Jimmy J. M. Tan,et al.  Fault-tolerant cycle-embedding of crossed cubes , 2003, Inf. Process. Lett..

[22]  Cheng-Kuan Lin,et al.  Disjoint cycles in hypercubes with prescribed vertices in each cycle , 2013, Discret. Appl. Math..

[23]  Kemal Efe,et al.  The Crossed Cube Architecture for Parallel Computation , 1992, IEEE Trans. Parallel Distributed Syst..

[24]  Lih-Hsing Hsu,et al.  Embedding a Hamiltonian cycle in the crossed cube with two required vertices in the fixed positions , 2011, Appl. Math. Comput..