A unified model of short-range and long-range motion perception

The human vision system is able to effortlessly perceive both short-range and long-range motion patterns in complex dynamic scenes. Previous work has assumed that two different mechanisms are involved in processing these two types of motion. In this paper, we propose a hierarchical model as a unified framework for modeling both short-range and long-range motion perception. Our model consists of two key components: a data likelihood that proposes multiple motion hypotheses using nonlinear matching, and a hierarchical prior that imposes slowness and spatial smoothness constraints on the motion field at multiple scales. We tested our model on two types of stimuli, random dot kinematograms and multiple-aperture stimuli, both commonly used in human vision research. We demonstrate that the hierarchical model adequately accounts for human performance in psychophysical experiments.

[1]  Edward H. Adelson,et al.  Motion illusions as optimal percepts , 2002, Nature Neuroscience.

[2]  Lucia M Vaina,et al.  First-order and second-order motion: neurological evidence for neuroanatomically distinct systems. , 2004, Progress in brain research.

[3]  Tai Sing Lee,et al.  Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[4]  Adnan Darwiche,et al.  Node Splitting: A Scheme for Generating Upper Bounds in Bayesian Networks , 2007, UAI.

[5]  Alan L. Yuille,et al.  Ideal Observers for Detecting Motion: Correspondence Noise , 2005, NIPS.

[6]  H Barlow,et al.  Correspondence Noise and Signal Pooling in the Detection of Coherent Visual Motion , 1997, The Journal of Neuroscience.

[7]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[8]  P. Anandan,et al.  A computational framework and an algorithm for the measurement of visual motion , 1987, International Journal of Computer Vision.

[9]  Alan L. F. Lee,et al.  A comparison of global motion perception using a multiple-aperture stimulus. , 2010, Journal of vision.

[10]  Z L Lu,et al.  Three-systems theory of human visual motion perception: review and update. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[11]  Maggie Shiffrar,et al.  The influence of terminators on motion integration across space , 1992, Vision Research.

[12]  James T. Todd,et al.  The perception of globally coherent motion , 1992, Vision Research.

[13]  Michael J. Black,et al.  On the Spatial Statistics of Optical Flow , 2005, ICCV.

[14]  Stig K. Andersen,et al.  Probabilistic reasoning in intelligent systems: Networks of plausible inference , 1991 .

[15]  S. Grossberg,et al.  Cortical dynamics of visual motion perception: short-range and long-range apparent motion. , 1992, Psychological review.

[16]  Tatsuto Takeuchi,et al.  PII: S0042-6989(98)00019-4 , 1998 .

[17]  O. Braddick A short-range process in apparent motion. , 1974, Vision research.

[18]  P Cavanagh,et al.  Short-range vs long-range motion: not a valid distinction. , 1991, Spatial vision.

[19]  J. Movshon,et al.  The analysis of visual motion: a comparison of neuronal and psychophysical performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  Eero P. Simoncelli,et al.  Noise characteristics and prior expectations in human visual speed perception , 2006, Nature Neuroscience.

[21]  S. Nishida,et al.  Adaptive pooling of visual motion signals by the human visual system revealed with a novel multi-element stimulus. , 2009, Journal of vision.

[22]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[23]  Michael J. Black,et al.  On the Spatial Statistics of Optical Flow , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[24]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[25]  Norberto M. Grzywacz,et al.  A computational theory for the perception of coherent visual motion , 1988, Nature.

[26]  W. C. Karl,et al.  Eecient Multiscale Regularization with Applications to the Computation of Optical Flow 1 , 1993 .