Net primary productivity in the terrestrial biosphere: The application of a global model

DEMETER, a new process-based model of the terrestrial biosphere, is used to simulate global patterns of net primary productivity (NPP). For the modern climate, NPP and vegetation biomass are simulated to be 62.1 Gt C yr−1 and 800.6 Gt C, respectively. Simulated NPP is found to be highly correlated to field observations (r=0.9343) and the results of the empirically based Miami model (r=0.9587).

[1]  J. Foley The sensitivity of the terrestrial biosphere to climatic change: A simulation of the Middle Holocene , 1994 .

[2]  Gérard Dedieu,et al.  Methodology for the estimation of terrestrial net primary production from remotely sensed data , 1994 .

[3]  J. Randerson,et al.  Terrestrial ecosystem production: A process model based on global satellite and surface data , 1993 .

[4]  A. McGuire,et al.  Global climate change and terrestrial net primary production , 1993, Nature.

[5]  John M. Norman,et al.  4 – Scaling Processes between Leaf and Canopy Levels , 1993 .

[6]  A. McGuire,et al.  Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America , 1992 .

[7]  P. Friedlingstein,et al.  The climate induced variation of the continental biosphere: A model simulation of the Last Glacial Maximum , 1992 .

[8]  W. Cramer,et al.  A global biome model based on plant physiology and dominance, soil properties and climate , 1992 .

[9]  G. Esser Implications of Climate Change for Production and Decomposition in Grasslands and Coniferous Forests. , 1992, Ecological applications : a publication of the Ecological Society of America.

[10]  Claudio O. Stöckle,et al.  Canopy photosynthesis and transpiration estimates using radiation interception models with different levels of detail , 1992 .

[11]  W. Cramer,et al.  The IIASA database for mean monthly values of temperature , 1991 .

[12]  E. Rastetter,et al.  Potential Net Primary Productivity in South America: Application of a Global Model. , 1991, Ecological applications : a publication of the Ecological Society of America.

[13]  S. Long,et al.  Primary Production in Grasslands and Coniferous Forests with Climate Change: An Overview. , 1991, Ecological applications : a publication of the Ecological Society of America.

[14]  M. G. Ryan,et al.  Effects of Climate Change on Plant Respiration. , 1991, Ecological applications : a publication of the Ecological Society of America.

[15]  W. James Shuttleworth,et al.  Insight from large-scale observational studies of land/atmosphere interactions , 1991 .

[16]  J. Amthor Respiration in a future, higher‐CO2 world , 1991 .

[17]  R. Monserud Methods for Comparing Global Vegetation Maps , 1990 .

[18]  Michael G. Ryan,et al.  Growth and maintenance respiration in stems of Pinuscontorta and Piceaengelmannii , 1990 .

[19]  E. Box Estimating the seasonal carbon source-sink geography of a natural, steady-state terrestrial biosphere , 1988 .

[20]  S. Running,et al.  A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes , 1988 .

[21]  K. J. Mccree Sensitivity of Sorghum Grain Yield to Ontogenetic Changes in Respiration Coeffecients , 1988 .

[22]  S. Long,et al.  Photosynthesis and temperature, with particular reference to effects on quantum yield. , 1988, Symposia of the Society for Experimental Biology.

[23]  G. Esser Sensitivity of global carbon pools and fluxes to human and potential climatic impacts , 1987 .

[24]  J. Rodhe The large-scale circulation in the Skagerrak; interpretation of some observations , 1987 .

[25]  E. Reekie,et al.  GROWTH AND MAINTENANCE RESPIRATION OF PERENNIAL ROOT SYSTEMS IN A DRY GRASSLAND DOMINATED BY AGROPYRON DASYSTACHYUM (HOOK.) SCRIBN. , 1987 .

[26]  F. Woodward Climate and plant distribution , 1987 .

[27]  J. Amthor Evolution and applicability of a whole plant respiration model , 1986 .

[28]  J. Kutzbach,et al.  The Influence of Changing Orbital Parameters and Surface Boundary Conditions on Climate Simulations for the Past 18 000 Years , 1986 .

[29]  A. Dalcher,et al.  A Simple Biosphere Model (SIB) for Use within General Circulation Models , 1986 .

[30]  K. G. McNaughton,et al.  Stomatal Control of Transpiration: Scaling Up from Leaf to Region , 1986 .

[31]  J. Amthor,et al.  The role of maintenance respiration in plant growth , 1984 .

[32]  Elgene O. Box,et al.  Tasks for Vegetation Science I: Macroclimate and Plant Forms: An Introduction to Predictive Modeling in Phytogeography , 2011 .

[33]  P. Jarvis,et al.  CHAPTER 1 – PREDICTING EFFECTS OF VEGETATION CHANGES ON TRANSPIRATION AND EVAPORATION , 1983 .

[34]  E. Matthews Global Vegetation and Land Use: New High-Resolution Data Bases for Climate Studies , 1983 .

[35]  T. Sharkey,et al.  Stomatal conductance and photosynthesis , 1982 .

[36]  P. Ketner,et al.  Terrestrial primary production and phytomass , 1979 .

[37]  James R. Ehleringer,et al.  Quantum Yields for CO2 Uptake in C3 and C4 Plants: Dependence on Temperature, CO2, and O2 Concentration , 1977 .

[38]  H. Lieth Modeling the Primary Productivity of the World , 1975 .

[39]  G. Likens,et al.  Carbon in the biota. , 1973, Brookhaven symposia in biology.

[40]  C. Priestley,et al.  On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters , 1972 .

[41]  M. Rosenzweig Net Primary Productivity of Terrestrial Communities: Prediction from Climatological Data , 1968, The American Naturalist.

[42]  E. T. Linacre,et al.  Estimating the net-radiation flux , 1968 .

[43]  H. L. Penman Natural evaporation from open water, bare soil and grass , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[44]  L. Holdridge Determination of World Plant Formations From Simple Climatic Data. , 1947, Science.