Capacitative Ca2+ entry into Xenopus oocytes is sensitive to ω-conotoxins GVIA, MVIIA and MVIIC

[1]  R. Tsien,et al.  Calcium Current Activated by Depletion of Calcium Stores in Xenopus Oocytes , 1997, The Journal of general physiology.

[2]  R. Hardie Calcium signalling: Setting store by calcium channels , 1996, Current Biology.

[3]  H. C. Hartzell,et al.  Activation of different Cl currents in Xenopus oocytes by Ca liberated from stores and by capacitative Ca influx , 1996, The Journal of general physiology.

[4]  R. Hurst,et al.  trp, a Novel Mammalian Gene Family Essential for Agonist-Activated Capacitative Ca2+ Entry , 1996, Cell.

[5]  E. Clementi,et al.  Pharmacological and functional properties of voltage-independent Ca2+ channels. , 1996, Cell calcium.

[6]  P. Delmas,et al.  Muscarinic Activation of a Novel Voltage‐sensitive Inward Current in Rabbit Prevertebral Sympathetic Neurons , 1996, The European journal of neuroscience.

[7]  R. Hardie,et al.  Magnesium-dependent block of the light-activated and trp-dependent conductance in Drosophila photoreceptors. , 1995, Journal of neurophysiology.

[8]  M. Berridge,et al.  Putative capacitative calcium entry channels: expression of Drosophila trp and evidence for the existence of vertebrate homologues. , 1995, The Biochemical journal.

[9]  R. Miledi,et al.  A monovalent cationic conductance that is blocked by extracellular divalent cations in Xenopus oocytes. , 1995, The Journal of physiology.

[10]  O. Petersen,et al.  Region-specific Activity of the Plasma Membrane Ca2+Pump and Delayed Activation of Ca2+Entry Characterize the Polarized, Agonist-evoked Ca2+Signals in Exocrine Cells (*) , 1995, The Journal of Biological Chemistry.

[11]  R. Lewis,et al.  Rapid inactivation of depletion-activated calcium current (ICRAC) due to local calcium feedback , 1995, The Journal of general physiology.

[12]  Manuela G. López,et al.  Dotarizine versus flunarizine as calcium antagonists in chromaffin cells , 1995, British journal of pharmacology.

[13]  M. Berridge,et al.  The regulation of capacitative calcium entry by calcium and protein kinase C in Xenopus oocytes. , 1994, The Journal of biological chemistry.

[14]  E. Rozengurt,et al.  Thapsigargin and di-tert-butylhydroquinone induce synergistic stimulation of DNA synthesis with phorbol ester and bombesin in Swiss 3T3 cells. , 1994, The Journal of biological chemistry.

[15]  J. Putney,et al.  The signal for capacitative calcium entry , 1993, Cell.

[16]  W. Stühmer,et al.  Ca2+ oscillations and Ca2+ influx in Xenopus oocytes expressing a novel 5‐hydroxytryptamine receptor. , 1993, The Journal of physiology.

[17]  Walter Stühmer,et al.  Depletion of InsP3 stores activates a Ca2+ and K+ current by means of a phosphatase and a diffusible messenger , 1993, Nature.

[18]  R. Tsien,et al.  Functional expression of a rapidly inactivating neuronal calcium channel , 1993, Nature.

[19]  B. Mayer,et al.  Inhibition of Ca2+ transport pathways in thymic lymphocytes by econazole, miconazole, and SKF 96365. , 1993, The American journal of physiology.

[20]  B. Bean,et al.  A new conus peptide ligand for mammalian presynaptic Ca2+ channels , 1992, Neuron.

[21]  L. Kelly,et al.  Identification of a Drosophila gene encoding a calmodulin-binding protein with homology to the trp phototransduction gene , 1992, Neuron.

[22]  R. Hardie,et al.  The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors , 1992, Neuron.

[23]  R. Penner,et al.  Depletion of intracellular calcium stores activates a calcium current in mast cells , 1992, Nature.

[24]  M. Lazdunski,et al.  Calciseptine, a peptide isolated from black mamba venom, is a specific blocker of the L-type calcium channel. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[25]  M. M. White,et al.  Niflumic and flufenamic acids are potent reversible blockers of Ca2(+)-activated Cl- channels in Xenopus oocytes. , 1990, Molecular pharmacology.

[26]  Y. Oron,et al.  Extracellular calcium participates in responses to acetylcholine in Xenopus oocytes , 1990, FEBS letters.

[27]  K. Krause,et al.  Inositol trisphosphate isomers, but not inositol 1,3,4,5-tetrakisphosphate, induce calcium influx in Xenopus laevis oocytes. , 1988, The Journal of biological chemistry.

[28]  R. Miledi,et al.  Tetrodotoxin-sensitive sodium current in native Xenopus oocytes , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[29]  Y. Nomura,et al.  Cyclic AMP facilitates slow-inactivating Ca2+ channel currents expressed by Xenopus oocyte after injection of rat brain mRNA , 1987, Neuroscience Letters.

[30]  B. Sakmann,et al.  Rat brain serotonin receptors in Xenopus oocytes are coupled by intracellular calcium to endogenous channels. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[31]  R. Miledi,et al.  Inositol trisphosphate activates a voltage-dependent calcium influx in Xenopus oocytes , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[32]  N. Dascal,et al.  Role of calcium mobilization in mediation of acetylcholine‐evoked chloride currents in Xenopus laevis oocytes. , 1985, The Journal of physiology.

[33]  M E Barish,et al.  A transient calcium‐dependent chloride current in the immature Xenopus oocyte. , 1983, The Journal of physiology.

[34]  R. Miledi,et al.  Cholinergic and catecholaminergic receptors in the Xenopus oocyte membrane , 1982, The Journal of physiology.

[35]  M. Adams,et al.  CALCIUM CHANNEL DIVERSITY AND NEUROTRANSMITTER RELEASE : THE OMEGA -CONOTOXINS AND OMEGA -AGATOXINS , 1994 .

[36]  M. Morad,et al.  Modulation of cardiac ion channels by magnesium. , 1991, Annual review of physiology.