Dynamic concentration of the triangle‐free process

The triangle-free process begins with an empty graph on n vertices and iteratively adds edges chosen uniformly at random subject to the constraint that no triangle is formed. We determine the asymptotic number of edges in the maximal triangle-free graph at which the triangle-free process terminates. We also bound the independence number of this graph, which gives an improved lower bound on Ramsey numbers: we show R(3,t) > (1/4 − o(1))t 2/ log t, which is within a 4 + o(1) factor of the best known upper bound. Furthermore, we determine which bounded size subgraphs are likely to appear in the maximal triangle-free graph produced by the triangle-free process: they are precisely those triangle-free graphs with maximal average density at most 2.

[1]  Stefanie Gerke,et al.  No Dense Subgraphs Appear in the Triangle-free Graph Process , 2011, Electron. J. Comb..

[2]  Noga Alon,et al.  A note on regular Ramsey graphs , 2008, J. Graph Theory.

[3]  Béla Bollobás,et al.  Random Graphs and Branching Processes , 2008 .

[4]  Van H. Vu,et al.  Concentration of Multivariate Polynomials and Its Applications , 2000, Comb..

[5]  Guy Wolfovitz,et al.  The K_4-free process , 2010, 1008.4044.

[6]  Michael E. Picollelli The Final Size of the Cℓ-free Process , 2014, SIAM J. Discret. Math..

[7]  P. Erdös Graph Theory and Probability. II , 1961, Canadian Journal of Mathematics.

[8]  Noga Alon,et al.  The Probabilistic Method, Second Edition , 2004 .

[9]  János Komlós,et al.  A Note on Ramsey Numbers , 1980, J. Comb. Theory, Ser. A.

[10]  Béla Bollobás,et al.  Constrained Graph Processes , 2000, Electron. J. Comb..

[11]  Joel H. Spencer,et al.  Asymptotic lower bounds for Ramsey functions , 1977, Discret. Math..

[12]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[13]  Noga Alon,et al.  Explicit Ramsey graphs and orthonormal labelings , 1994, Electron. J. Comb..

[14]  Lutz Warnke,et al.  The Cℓ‐free process , 2011, Random Struct. Algorithms.

[15]  Peter Keevash,et al.  The early evolution of the H-free process , 2009, 0908.0429.

[16]  Alan M. Frieze,et al.  A note on the random greedy triangle-packing algorithm , 2010, ArXiv.

[17]  Deryk Osthus,et al.  Random maximal H-free graphs , 2001 .

[18]  James B. Shearer,et al.  A note on the independence number of triangle-free graphs , 1983, Discret. Math..

[19]  Ingo Schiermeyer,et al.  The Ramsey number r(C7, C7, C7) , 2003, Discuss. Math. Graph Theory.

[20]  Peter Winkler,et al.  On the Size of a Random Maximal Graph , 1995, Random Struct. Algorithms.

[21]  P. Erdös,et al.  Graph Theory and Probability , 1959 .

[22]  Guy Wolfovitz Lower Bounds for the Size of Random Maximal H-Free Graphs , 2009, Electron. J. Comb..

[23]  Guy Wolfovitz,et al.  Triangle‐free subgraphs in the triangle‐free process , 2009, Random Struct. Algorithms.

[24]  Nicholas C. Wormald,et al.  Random Graph Processes with Degree Restrictions , 1992, Combinatorics, Probability and Computing.

[25]  N. Alon,et al.  The Probabilistic Method, Second Edition , 2000 .

[26]  Michael E. Picollelli The Final Size of the C4-Free Process , 2011, Combinatorics, Probability and Computing.

[27]  T. Bohman The triangle-free process , 2008, 0806.4375.

[28]  Béla Bollobás,et al.  Handbook of large-scale random networks , 2008 .

[29]  Tom Bohman,et al.  Random triangle removal , 2012, 1203.4223.

[30]  Michael E. Picollelli The diamond-free process , 2014, Random Struct. Algorithms.

[31]  D. Freedman On Tail Probabilities for Martingales , 1975 .

[32]  Joel H. Spencer,et al.  Counting extensions , 1990, J. Comb. Theory, Ser. A.

[33]  Jeong Han Kim,et al.  The Ramsey Number R(3, t) Has Order of Magnitude t2/log t , 1995, Random Struct. Algorithms.

[34]  Lutz Warnke Dense subgraphs in the H-free process , 2011, Discret. Math..

[35]  Lutz Warnke,et al.  When does the K4‐free process stop? , 2010, Random Struct. Algorithms.