Commutative combinatorial Hopf algebras

Abstract We propose several constructions of commutative or cocommutative Hopf algebras based on various combinatorial structures and investigate the relations between them. A commutative Hopf algebra of permutations is obtained by a general construction based on graphs, and its noncommutative dual is realized in three different ways, in particular, as the Grossman–Larson algebra of heap-ordered trees. Extensions to endofunctions, parking functions, set compositions, set partitions, planar binary trees, and rooted forests are discussed. Finally, we introduce one-parameter families interpolating between different structures constructed on the same combinatorial objects.

[1]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[2]  C. Reutenauer,et al.  Duality between Quasi-Symmetrical Functions and the Solomon Descent Algebra , 1995 .

[3]  F. Hivert,et al.  Commutative Hopf algebras of permutations and trees , 2005 .

[4]  Jean-Yves Thibon,et al.  The algebra of binary search trees , 2004, Theor. Comput. Sci..

[5]  C. Reutenauer Free Lie Algebras , 1993 .

[6]  Jean-Louis Loday,et al.  Hopf Algebra of the Planar Binary Trees , 1998 .

[7]  Frank Sottile,et al.  Combinatorial Hopf algebras and generalized Dehn–Sommerville relations , 2003, Compositio Mathematica.

[8]  QUANTUM GROUPS AND FIELD THEORY , 2000, hep-th/0003189.

[9]  Richard G. Larson,et al.  Hopf-algebraic structure of families of trees , 1989 .

[10]  J. Thibon,et al.  Construction de trigèbres dendriformes , 2006 .

[11]  Jean-Yves Thibon,et al.  Algèbres de Hopf de graphes , 2004 .

[12]  Israel M. Gelfand,et al.  Noncommutative Symmetrical Functions , 1995 .

[13]  Quantum groups and quantum field theory: I. The free scalar field , 2002, hep-th/0208118.

[14]  Ira M. Gessel,et al.  A noncommutative generalization and $q$-analog of the Lagrange inversion formula , 1980 .

[15]  Florent Hivert,et al.  Combinatoire des fonctions quasi-symétiques , 1999 .

[16]  Cocommutative Hopf Algebras of Permutations and Trees , 2004, math/0403101.

[17]  Mike Zabrocki,et al.  Invariants and Coinvariants of the Symmetric Group in Noncommuting Variables , 2008, Canadian Journal of Mathematics.

[18]  Parking Functions and Descent Algebras , 2004, math/0411387.

[19]  Jean-Yves Thibon,et al.  Noncommutative symmetric functions and Lagrange inversion , 2008, Adv. Appl. Math..

[20]  Li Jin-q,et al.  Hopf algebras , 2019, Graduate Studies in Mathematics.

[21]  Pu Zhang,et al.  Twisted Hopf Algebras, Ringel–Hall Algebras, and Green's Categories: With an appendix by the referee , 2000 .

[22]  Daniel Krob,et al.  Noncommutative Symmetric Functions Iv: Quantum Linear Groups and Hecke Algebras at q = 0 , 1997 .

[23]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[24]  Alain Connes,et al.  Hopf Algebras, Renormalization and Noncommutative Geometry , 1998 .

[25]  Bruce E. Sagan,et al.  Symmetric functions in noncommuting variables , 2002, math/0208168.

[26]  Christophe Reutenauer,et al.  Algèbres de Hopf de tableaux , 1995 .

[27]  Alain Lascoux,et al.  Noncommutative symmetric functions , 1994 .

[28]  J. Thibon,et al.  A Hopf-Algebra Approach to Inner Plethysm , 1994 .

[29]  Florent Hivert,et al.  Hecke Algebras, Difference Operators, and Quasi-Symmetric Functions , 2000 .

[30]  Jean-Yves Thibon,et al.  Hopf algebras and dendriform structures arising from parking functions , 2005 .

[31]  C. Reutenauer,et al.  On Descent Algebras and Twisted Bialgebras , 2004 .

[32]  René Ruchti Twisted hopf algebras , 1979 .

[33]  Gilbert Labelle,et al.  Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.

[34]  Gérard Duchamp,et al.  Noncommutative Symmetric Functions Vi: Free Quasi-Symmetric Functions and Related Algebras , 2002, Int. J. Algebra Comput..

[35]  J. Thibon,et al.  Quantum quasi-symmetric functions and Hecke algebras , 1996 .

[36]  Christian Brouder,et al.  Renormalization of QED with planar binary trees , 2001 .

[37]  Hopf Algebras of Graphs , 2008, 0812.3407.

[38]  A. Joyal Une théorie combinatoire des séries formelles , 1981 .

[39]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[40]  Algebraic constructions on set partitions , 2007 .

[41]  Jean-Yves Thibon,et al.  Noncommutative Cyclic Characters of Symmetric Groups , 1996, J. Comb. Theory A.