Structure of the ionized lunar sodium and potassium exosphere: Dawn‐dusk asymmetry

We present latitude and longitude distributions of Na+ and K+ fluxes from the Moon derived from Kaguya low‐energy ion data. Although the latitude distribution agrees with previous ground‐based telescope observations, dawn‐dusk asymmetry has been determined in the longitude distribution. Our model of the lunar surface abundance and yield of Na and K demonstrates that the abundance decreases to approximately 50% at dusk compared with that at dawn due to the emission of the exospheric particles assuming the ion fluxes observed by Kaguya are proportional to the yield. It is also implied that the surface abundance of Na and K need to be supplied during the night to explain the observed lunar exosphere with dawn‐dusk asymmetry. We argue that the interplanetary dust as well as grain diffusion and migration/recycling of the exospheric particles may be major suppliers.

[1]  V. Tenishev,et al.  Kinetic modeling of sodium in the lunar exosphere , 2013 .

[2]  P. Feldman,et al.  New upper limits on numerous atmospheric species in the native lunar atmosphere , 2013 .

[3]  F. Marzari,et al.  Micrometeoroids flux on the Moon , 2013 .

[4]  J. Halekas,et al.  Using ARTEMIS pickup ion observations to place constraints on the lunar atmosphere , 2013 .

[5]  R. P. Butler,et al.  Signals embedded in the radial velocity noise - Periodic variations in the τ Ceti velocities , 2012, 1212.4277.

[6]  M. Fujimoto,et al.  Control of lunar external magnetic enhancements by IMF polarity: A case study , 2012 .

[7]  V. Angelopoulos,et al.  ARTEMIS observations of lunar pick‐up ions in the terrestrial magnetotail lobes , 2012 .

[8]  A. Glocer,et al.  Flux estimates of ions from the lunar exosphere , 2012 .

[9]  William M. Farrell,et al.  Lunar Pickup Ions Observed by ARTEMIS: Spatial and Temporal Distribution and Constraints on Species and Source Locations , 2012 .

[10]  Chunlai Li,et al.  Detection of m/q = 2 pickup ions in the plasma environment of the Moon: The trace of exospheric H2+ , 2011 .

[11]  Hisayoshi Shimizu,et al.  Magnetic Cleanliness Program Under Control of Electromagnetic Compatibility for the SELENE (Kaguya) Spacecraft , 2010 .

[12]  S. Nakazawa,et al.  Lunar Magnetic Field Observation and Initial Global Mapping of Lunar Magnetic Anomalies by MAP-LMAG Onboard SELENE (Kaguya) , 2010 .

[13]  S. Sasaki,et al.  In-flight Performance and Initial Results of Plasma Energy Angle and Composition Experiment (PACE) on SELENE (Kaguya) , 2010 .

[14]  A. Bhardwaj,et al.  First observation of a mini‐magnetosphere above a lunar magnetic anomaly using energetic neutral atoms , 2010, 1011.4442.

[15]  A. Sharma,et al.  Sources of sodium in the lunar exosphere: Modeling using ground-based observations of sodium emission and spacecraft data of the plasma , 2010 .

[16]  S. Nakazawa,et al.  In-orbit calibration of the lunar magnetometer onboard SELENE (KAGUYA) , 2009 .

[17]  Hisayoshi Shimizu,et al.  First in situ observation of the Moon‐originating ions in the Earth's Magnetosphere by MAP‐PACE on SELENE (KAGUYA) , 2009 .

[18]  Ichiro Yoshikawa,et al.  Interplanetary dust distribution and temporal variability of Mercury's atmospheric Na , 2009 .

[19]  Hisayoshi Shimizu,et al.  First direct detection of ions originating from the Moon by MAP‐PACE IMA onboard SELENE (KAGUYA) , 2009 .

[20]  M. Purucker A global model of the internal magnetic field of the Moon based on Lunar Prospector magnetometer observations , 2008 .

[21]  D. Mitchell,et al.  Density cavity observed over a strong lunar crustal magnetic anomaly in the solar wind: A mini-magnetosphere? , 2008 .

[22]  A. Matsuoka,et al.  Ground calibration of the high-sensitivity SELENE lunar magnetometer LMAG , 2008 .

[23]  S. Sasaki,et al.  Low-energy charged particle measurement by MAP-PACE onboard SELENE , 2008 .

[24]  D. Mitchell,et al.  Global mapping of lunar crustal magnetic fields by Lunar Prospector , 2008 .

[25]  A. Sharma,et al.  Influence of plasma ions on source rates for the lunar exosphere during passage through the Earth's magnetosphere , 2008 .

[26]  G. Cremonese,et al.  Neutral sodium atoms release from the surfaces of the Moon and Mercury induced by meteoroid impacts. , 2007 .

[27]  H. Spence,et al.  Magnetospheric influence on the Moon's exosphere , 2006 .

[28]  Robert E. Johnson,et al.  Monte Carlo model of sputtering and other ejection processes within a regolith , 2005 .

[29]  Y. Saito,et al.  Estimation of picked-up lunar ions for future compositional remote SIMS analyses of the lunar surface , 2005 .

[30]  R. Killen,et al.  Source rates and ion recycling rates for Na and K in Mercury's atmosphere , 2004 .

[31]  Mario H. Acuna,et al.  Initial mapping and interpretation of lunar crustal magnetic anomalies using Lunar Prospector magnetometer data , 2001 .

[32]  Mario H. Acuna,et al.  Mapping of crustal magnetic anomalies on the lunar near side by the Lunar Prospector electron reflectometer , 2001 .

[33]  R. Killen,et al.  Variation of lunar sodium during passage of the Moon through the Earth's magnetotail , 2000 .

[34]  S. Alan Stern,et al.  The lunar atmosphere: History, status, current problems, and context , 1999 .

[35]  T. Madey,et al.  Photon-stimulated desorption as a substantial source of sodium in the lunar atmosphere , 1999, Nature.

[36]  Rosemary M. Killen,et al.  The surface‐bounded atmospheres of Mercury and the Moon , 1999 .

[37]  Steven Smith,et al.  Discovery of the distant lunar sodium tail and its enhancement following the Leonid Meteor Shower of 1998 , 1999 .

[38]  Urs Mall,et al.  Direct observation of lunar pick‐up ions near the Moon , 1998 .

[39]  T. H. Morgan,et al.  Coronagraphic observations of the lunar sodium exosphere near the lunar surface , 1998 .

[40]  Theodore E. Madey,et al.  Desorption of alkali atoms and ions from oxide surfaces: Relevance to origins of Na and K in atmospheres of Mercury and the Moon , 1998 .

[41]  M. Mendillo,et al.  Constraints on the origin of the Moon's atmosphere from observations during a lunar eclipse , 1995, Nature.

[42]  W. Smyth,et al.  The Sodium and Potassium Atmospheres of the Moon , 1995 .

[43]  Martin Hilchenbach,et al.  Observation of energetic lunar pick-up ions near earth , 1993 .

[44]  D. Hunten,et al.  The sodium and potassium atmosphere of the moon and its interaction with the surface , 1992 .

[45]  David J. McComas,et al.  Lunar surface composition and solar wind‐Induced secondary ion mass spectrometry , 1991 .

[46]  Robert E. Johnson,et al.  Lunar surface: Sputtering and secondary ion mass spectrometry , 1991 .

[47]  D. Hunten,et al.  Observations of sodium in the tenuous lunar atmosphere , 1988 .

[48]  A. Potter,et al.  Discovery of Sodium and Potassium Vapor in the Atmosphere of the Moon , 1988, Science.

[49]  W. Huebner,et al.  Solar photo rates for planetary atmospheres and atmospheric pollutants , 1984 .

[50]  L. Pederson Are neutral sodium atoms produced on glass surfaces by electron bombardment , 1982 .

[51]  J. Hoffman,et al.  Molecular gas species in the lunar atmosphere , 1975 .

[52]  T. Mukai,et al.  Development of an ion energy mass spectrometer for application on board three-axis stabilized spacecraft , 2005 .

[53]  M. Mendillo,et al.  OBSERVATIONAL TEST FOR THE SOLAR WIND SPUTTERING ORIGIN OF THE MOON'S EXTENDED SODIUM ATMOSPHERE , 1999 .