An integrated landscape of protein expression in human cancer

[1]  E. Schaafsma,et al.  Faculty Opinions recommendation of CELLector: Genomics-Guided Selection of Cancer In Vitro Models. , 2020, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[2]  MAGE-TAB , 2020, Definitions.

[3]  Evan G. Williams,et al.  Multi-omic measurements of heterogeneity in HeLa cells across laboratories , 2019, Nature Biotechnology.

[4]  Juan Antonio Vizcaíno,et al.  The functional landscape of the human phosphoproteome , 2019, Nature Biotechnology.

[5]  Martin Eisenacher,et al.  The PRIDE database and related tools and resources in 2019: improving support for quantification data , 2018, Nucleic Acids Res..

[6]  Jacob D. Jaffe,et al.  Next-generation characterization of the Cancer Cell Line Encyclopedia , 2019, Nature.

[7]  S. Janes,et al.  The secret lives of cancer cell lines , 2018, Disease Models & Mechanisms.

[8]  Jian Wang,et al.  Assembling the Community-Scale Discoverable Human Proteome , 2018, Cell systems.

[9]  Joshua M. Dempster,et al.  Genetic and transcriptional evolution alters cancer cell line drug response , 2018, Nature.

[10]  Mathias Wilhelm,et al.  A deep proteome and transcriptome abundance atlas of 29 healthy human tissues , 2018, bioRxiv.

[11]  Peter W. Laird,et al.  Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer , 2018, Cell.

[12]  C. Sander,et al.  A Landscape of Metabolic Variation across Tumor Types. , 2018, Cell systems.

[13]  Francesco Iorio,et al.  CELLector: Genomics Guided Selection of Cancer in vitro Models , 2018, bioRxiv.

[14]  Nuno A. Fonseca,et al.  Expression Atlas: gene and protein expression across multiple studies and organisms , 2017, Nucleic Acids Res..

[15]  Thawfeek M. Varusai,et al.  The Reactome Pathway Knowledgebase , 2017, Nucleic acids research.

[16]  Heiner Koch,et al.  Pharmacoproteomic characterisation of human colon and rectal cancer , 2017, Molecular systems biology.

[17]  Daniel C. Liebler,et al.  Colorectal Cancer Cell Line Proteomes Are Representative of Primary Tumors and Predict Drug Sensitivity. , 2017, Gastroenterology.

[18]  Patricia Greninger,et al.  Detection of Dysregulated Protein Association Networks by High-Throughput Proteomics Predicts Cancer Vulnerabilities , 2017, Nature Biotechnology.

[19]  Karina D. Sørensen,et al.  An Optimized Shotgun Strategy for the Rapid Generation of Comprehensive Human Proteomes , 2017, Cell systems.

[20]  Claire D. McWhite,et al.  Integration of over 9,000 mass spectrometry experiments builds a global map of human protein complexes , 2017, Molecular systems biology.

[21]  Lennart Martens,et al.  A Golden Age for Working with Public Proteomics Data , 2017, Trends in biochemical sciences.

[22]  Alexander Lex,et al.  UpSetR: an R package for the visualization of intersecting sets and their properties , 2017, bioRxiv.

[23]  Yiling Lu,et al.  Characterization of Human Cancer Cell Lines by Reverse-phase Protein Arrays. , 2017, Cancer cell.

[24]  Rodrigo Dienstmann,et al.  Genomic Determinants of Protein Abundance Variation in Colorectal Cancer Cells , 2016, bioRxiv.

[25]  Ruedi Aebersold,et al.  Mass-spectrometric exploration of proteome structure and function , 2016, Nature.

[26]  M. Mann,et al.  Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status , 2016, Nature Communications.

[27]  Guanglong Jiang,et al.  Comprehensive comparison of molecular portraits between cell lines and tumors in breast cancer , 2016, BMC Genomics.

[28]  Peter K. Sorger,et al.  Conservation of protein abundance patterns reveals the regulatory architecture of the EGFR-MAPK pathway , 2016, Science Signaling.

[29]  Hans Clevers,et al.  Modeling Development and Disease with Organoids , 2016, Cell.

[30]  Ronald J. Moore,et al.  Integrated Proteogenomic Characterization of Human High-Grade Serous Ovarian Cancer , 2016, Cell.

[31]  Pär Stattin,et al.  The Proteome of Primary Prostate Cancer. , 2016, European urology.

[32]  R. Aebersold,et al.  On the Dependency of Cellular Protein Levels on mRNA Abundance , 2016, Cell.

[33]  Eytan Ruppin,et al.  System-wide Clinical Proteomics of Breast Cancer Reveals Global Remodeling of Tissue Homeostasis. , 2016, Cell systems.

[34]  M. Mann,et al.  Proteomic maps of breast cancer subtypes , 2016, Nature Communications.

[35]  J. Vizcaíno,et al.  Exploring the potential of public proteomics data , 2015, Proteomics.

[36]  Laura M. Heiser,et al.  Tumor-Derived Cell Lines as Molecular Models of Cancer Pharmacogenomics , 2015, Molecular Cancer Research.

[37]  Subha Madhavan,et al.  The CPTAC Data Portal: A Resource for Cancer Proteomics Research. , 2015, Journal of proteome research.

[38]  A. Lamond,et al.  Multidimensional proteomics for cell biology , 2015, Nature Reviews Molecular Cell Biology.

[39]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[40]  Su-In Lee,et al.  The Proteomic Landscape of Triple-Negative Breast Cancer. , 2015, Cell reports.

[41]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[42]  Jeffrey R. Whiteaker,et al.  Proteogenomic characterization of human colon and rectal cancer , 2014, Nature.

[43]  B. Kuster,et al.  Mass-spectrometry-based draft of the human proteome , 2014, Nature.

[44]  G. Getz,et al.  Inferring tumour purity and stromal and immune cell admixture from expression data , 2013, Nature Communications.

[45]  Mathias Wilhelm,et al.  Global proteome analysis of the NCI-60 cell line panel. , 2013, Cell reports.

[46]  C. Sander,et al.  Evaluating cell lines as tumour models by comparison of genomic profiles , 2013, Nature Communications.

[47]  Simen Myhre,et al.  Influence of DNA copy number and mRNA levels on the expression of breast cancer related proteins , 2013, Molecular oncology.

[48]  A. Brazma,et al.  Reuse of public genome-wide gene expression data , 2012, Nature Reviews Genetics.

[49]  Sridhar Ramaswamy,et al.  Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells , 2012, Nucleic Acids Res..

[50]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[51]  M. Mann,et al.  Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins* , 2012, Molecular & Cellular Proteomics.

[52]  Matko Bosnjak,et al.  REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms , 2011, PloS one.

[53]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[54]  Mehdi Mirzaei,et al.  Less label, more free: Approaches in label‐free quantitative mass spectrometry , 2011, Proteomics.

[55]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[56]  H. Parkinson,et al.  A global map of human gene expression , 2010, Nature Biotechnology.

[57]  Israel Steinfeld,et al.  BMC Bioinformatics BioMed Central , 2008 .

[58]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[59]  Joachim Selbig,et al.  pcaMethods - a bioconductor package providing PCA methods for incomplete data , 2007, Bioinform..

[60]  Paul T. Spellman,et al.  A simple spreadsheet-based, MIAME-supportive format for microarray data: MAGE-TAB , 2006, BMC Bioinformatics.

[61]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[62]  R. Sandberg,et al.  Assessment of tumor characteristic gene expression in cell lines using a tissue similarity index (TSI). , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[63]  M. Daly,et al.  PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes , 2003, Nature Genetics.