Adaptive tensor product wavelet methods for solving PDEs
暂无分享,去创建一个
[1] D. Hardin,et al. Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets , 1999 .
[2] M. Griebel,et al. Optimized Tensor-Product Approximation Spaces , 2000 .
[3] Rob P. Stevenson,et al. Computation of differential operators in wavelet coordinates , 2005, Math. Comput..
[4] W. Dahmen,et al. Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .
[5] R. Todor,et al. A new approach to energy-based sparse finite-element spaces , 2008 .
[6] I. Weinreich,et al. Wavelet-Galerkin methods: An adapted biorthogonal wavelet basis , 1993 .
[7] W. Dahmen. Stability of Multiscale Transformations. , 1995 .
[8] W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations , 1993 .
[9] R. Feynman,et al. Quantum Mechanics and Path Integrals , 1965 .
[10] Ding-Xuan Zhou,et al. Compactly Supported Refinable Functions with Infinite Masks , 1999 .
[11] Vom Fachbereich Mathematik,et al. Stabile biorthogonale Spline-Waveletbasen auf dem Intervall , 2006 .
[12] W. Dahmen. Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.
[13] Qiyu Sun. Two-Scale Difference Equation: Local And Global Linear Independence , 1991 .
[14] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[15] Harry Yserentant,et al. Sparse grid spaces for the numerical solution of the electronic Schrödinger equation , 2005, Numerische Mathematik.
[16] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[17] H. Thielemann. Bounds for smoothness of refinable functions , 2004 .
[18] Silvia Falletta,et al. Building Wavelets on ]0,1[ at Large Scales , 2003 .
[19] Rob P. Stevenson,et al. An optimal adaptive wavelet method without coarsening of the iterands , 2006, Math. Comput..
[20] W. Dahmen,et al. Wavelets with Complementary Boundary Conditions — Function Spaces on the Cube , 1998 .
[21] Christoph Schwab,et al. Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .
[22] Christoph Schwab,et al. High-Dimensional Finite Elements for Elliptic Problems with Multiple Scales , 2005, Multiscale Modeling & simulation.
[23] Wolfgang Dahmen,et al. Composite wavelet bases for operator equations , 1999, Math. Comput..
[24] Miriam Primbs. On the Computation of Gramian Matrices for refinable Bases on the Interval , 2008, Int. J. Wavelets Multiresolution Inf. Process..
[25] P. Lemarié-Rieusset. Fonctions à support compact dans les analyses multi-résoIutions , 1991 .
[26] Ivan P. Gavrilyuk,et al. Hierarchical Tensor-Product Approximation to the Inverse and Related Operators for High-Dimensional Elliptic Problems , 2004, Computing.
[27] Miriam Primbs. Stabile biortogonale Spline-Waveletbasen auf dem Intervall , 2006 .
[28] Rob Stevenson,et al. Adaptive wavelet algorithms for elliptic PDE's on product domains , 2008, Math. Comput..
[29] Michael Griebel,et al. Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems , 1995, Adv. Comput. Math..
[30] Rob P. Stevenson,et al. Sparse Tensor Product Wavelet Approximation of Singular Functions , 2010, SIAM J. Math. Anal..
[31] Will Light,et al. Approximation Theory in Tensor Product Spaces , 1985 .
[32] Pierre Gilles Lemarié-Rieusset. Analyses multi-résolutions non orthogonales, commutation entre projecteurs et derivation et ondelettes vecteurs à divergence nuIIe , 1992 .
[33] Kai Bittner,et al. A new view on biorthogonal spline wavelets , 2005 .
[34] Wolfgang Dahmen,et al. Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..
[35] Kai Schneider,et al. Wavelet approach for modelling and computing turbulence , 1998 .
[36] Pal-Andrej Nitsche. Sparse approximation of singularity functions , 2002 .
[37] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[38] Karsten Urban. Wavelets in Numerical Simulation - Problem Adapted Construction and Applications , 2002, Lecture Notes in Computational Science and Engineering.
[39] C. Micchelli,et al. Banded matrices with banded inverses, II: Locally finite decomposition of spline spaces , 1993 .
[40] Rob Stevenson,et al. Locally Supported, Piecewise Polynomial Biorthogonal Wavelets on Nonuniform Meshes , 2000 .
[41] Rob Stevenson,et al. An Adaptive Wavelet Method for Solving High-Dimensional Elliptic PDEs , 2009 .
[42] Rob Stevenson,et al. Divergence-free wavelet bases on the hypercube , 2011 .
[43] Wolfgang Dahmen,et al. Element-by-Element Construction of Wavelets Satisfying Stability and Moment Conditions , 1999, SIAM J. Numer. Anal..
[44] Hoang-Ngan Nguyen,et al. Finite element wavelets for solving partial differential equations , 2005 .
[45] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[46] Valérie Perrier,et al. Divergence-free and curl-free wavelets in two dimensions and three dimensions: application to turbulent flows , 2006 .
[47] M. Dauge. Elliptic boundary value problems on corner domains , 1988 .
[48] Michael Griebel,et al. Optimized general sparse grid approximation spaces for operator equations , 2009, Math. Comput..
[49] Wolfgang Dahmen,et al. Compression Techniques for Boundary Integral Equations - Asymptotically Optimal Complexity Estimates , 2006, SIAM J. Numer. Anal..
[50] Anita Tabacco,et al. Ondine Biortogonali: teoria e applicazioni , 1999 .
[51] Wolfgang Dahmen,et al. Wavelets on Manifolds I: Construction and Domain Decomposition , 1999, SIAM J. Math. Anal..
[52] M. Freidlin. Functional Integration And Partial Differential Equations , 1985 .
[53] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[54] George C. Donovan,et al. Intertwining multiresolution analyses and the construction of piecewise-polynomial wavelets , 1996 .
[55] L. Villemoes. Wavelet analysis of refinement equations , 1994 .
[56] Lars Grasedyck,et al. Existence and Computation of Low Kronecker-Rank Approximations for Large Linear Systems of Tensor Product Structure , 2004, Computing.
[57] Arend Aalberthus Roeland Metselaar. Handling Wavelet Expansions in numerical Methods , 2002 .
[58] T. Goodman. A Class of Orthogonal Refinable Functions and Wavelets , 2003 .
[59] C. Micchelli,et al. Using the refinement equation for evaluating integrals of wavelets , 1993 .
[60] Pál-Andrej Nitsche,et al. Best N Term Approximation Spaces for Tensor Product Wavelet Bases , 2006 .
[61] Y. Meyer. Ondelettes sur l'intervalle. , 1991 .
[62] Kai Bittner,et al. Biorthogonal Spline Wavelets on the Interval , 2005 .
[63] H. G. ter Morsche,et al. Splines en Wavelets , 2000 .