Adaptive tensor product wavelet methods for solving PDEs

[1]  D. Hardin,et al.  Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets , 1999 .

[2]  M. Griebel,et al.  Optimized Tensor-Product Approximation Spaces , 2000 .

[3]  Rob P. Stevenson,et al.  Computation of differential operators in wavelet coordinates , 2005, Math. Comput..

[4]  W. Dahmen,et al.  Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .

[5]  R. Todor,et al.  A new approach to energy-based sparse finite-element spaces , 2008 .

[6]  I. Weinreich,et al.  Wavelet-Galerkin methods: An adapted biorthogonal wavelet basis , 1993 .

[7]  W. Dahmen Stability of Multiscale Transformations. , 1995 .

[8]  W. Hackbusch Iterative Solution of Large Sparse Systems of Equations , 1993 .

[9]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[10]  Ding-Xuan Zhou,et al.  Compactly Supported Refinable Functions with Infinite Masks , 1999 .

[11]  Vom Fachbereich Mathematik,et al.  Stabile biorthogonale Spline-Waveletbasen auf dem Intervall , 2006 .

[12]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[13]  Qiyu Sun Two-Scale Difference Equation: Local And Global Linear Independence , 1991 .

[14]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[15]  Harry Yserentant,et al.  Sparse grid spaces for the numerical solution of the electronic Schrödinger equation , 2005, Numerische Mathematik.

[16]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[17]  H. Thielemann Bounds for smoothness of refinable functions , 2004 .

[18]  Silvia Falletta,et al.  Building Wavelets on ]0,1[ at Large Scales , 2003 .

[19]  Rob P. Stevenson,et al.  An optimal adaptive wavelet method without coarsening of the iterands , 2006, Math. Comput..

[20]  W. Dahmen,et al.  Wavelets with Complementary Boundary Conditions — Function Spaces on the Cube , 1998 .

[21]  Christoph Schwab,et al.  Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .

[22]  Christoph Schwab,et al.  High-Dimensional Finite Elements for Elliptic Problems with Multiple Scales , 2005, Multiscale Modeling & simulation.

[23]  Wolfgang Dahmen,et al.  Composite wavelet bases for operator equations , 1999, Math. Comput..

[24]  Miriam Primbs On the Computation of Gramian Matrices for refinable Bases on the Interval , 2008, Int. J. Wavelets Multiresolution Inf. Process..

[25]  P. Lemarié-Rieusset Fonctions à support compact dans les analyses multi-résoIutions , 1991 .

[26]  Ivan P. Gavrilyuk,et al.  Hierarchical Tensor-Product Approximation to the Inverse and Related Operators for High-Dimensional Elliptic Problems , 2004, Computing.

[27]  Miriam Primbs Stabile biortogonale Spline-Waveletbasen auf dem Intervall , 2006 .

[28]  Rob Stevenson,et al.  Adaptive wavelet algorithms for elliptic PDE's on product domains , 2008, Math. Comput..

[29]  Michael Griebel,et al.  Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems , 1995, Adv. Comput. Math..

[30]  Rob P. Stevenson,et al.  Sparse Tensor Product Wavelet Approximation of Singular Functions , 2010, SIAM J. Math. Anal..

[31]  Will Light,et al.  Approximation Theory in Tensor Product Spaces , 1985 .

[32]  Pierre Gilles Lemarié-Rieusset Analyses multi-résolutions non orthogonales, commutation entre projecteurs et derivation et ondelettes vecteurs à divergence nuIIe , 1992 .

[33]  Kai Bittner,et al.  A new view on biorthogonal spline wavelets , 2005 .

[34]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..

[35]  Kai Schneider,et al.  Wavelet approach for modelling and computing turbulence , 1998 .

[36]  Pal-Andrej Nitsche Sparse approximation of singularity functions , 2002 .

[37]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[38]  Karsten Urban Wavelets in Numerical Simulation - Problem Adapted Construction and Applications , 2002, Lecture Notes in Computational Science and Engineering.

[39]  C. Micchelli,et al.  Banded matrices with banded inverses, II: Locally finite decomposition of spline spaces , 1993 .

[40]  Rob Stevenson,et al.  Locally Supported, Piecewise Polynomial Biorthogonal Wavelets on Nonuniform Meshes , 2000 .

[41]  Rob Stevenson,et al.  An Adaptive Wavelet Method for Solving High-Dimensional Elliptic PDEs , 2009 .

[42]  Rob Stevenson,et al.  Divergence-free wavelet bases on the hypercube , 2011 .

[43]  Wolfgang Dahmen,et al.  Element-by-Element Construction of Wavelets Satisfying Stability and Moment Conditions , 1999, SIAM J. Numer. Anal..

[44]  Hoang-Ngan Nguyen,et al.  Finite element wavelets for solving partial differential equations , 2005 .

[45]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[46]  Valérie Perrier,et al.  Divergence-free and curl-free wavelets in two dimensions and three dimensions: application to turbulent flows , 2006 .

[47]  M. Dauge Elliptic boundary value problems on corner domains , 1988 .

[48]  Michael Griebel,et al.  Optimized general sparse grid approximation spaces for operator equations , 2009, Math. Comput..

[49]  Wolfgang Dahmen,et al.  Compression Techniques for Boundary Integral Equations - Asymptotically Optimal Complexity Estimates , 2006, SIAM J. Numer. Anal..

[50]  Anita Tabacco,et al.  Ondine Biortogonali: teoria e applicazioni , 1999 .

[51]  Wolfgang Dahmen,et al.  Wavelets on Manifolds I: Construction and Domain Decomposition , 1999, SIAM J. Math. Anal..

[52]  M. Freidlin Functional Integration And Partial Differential Equations , 1985 .

[53]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[54]  George C. Donovan,et al.  Intertwining multiresolution analyses and the construction of piecewise-polynomial wavelets , 1996 .

[55]  L. Villemoes Wavelet analysis of refinement equations , 1994 .

[56]  Lars Grasedyck,et al.  Existence and Computation of Low Kronecker-Rank Approximations for Large Linear Systems of Tensor Product Structure , 2004, Computing.

[57]  Arend Aalberthus Roeland Metselaar Handling Wavelet Expansions in numerical Methods , 2002 .

[58]  T. Goodman A Class of Orthogonal Refinable Functions and Wavelets , 2003 .

[59]  C. Micchelli,et al.  Using the refinement equation for evaluating integrals of wavelets , 1993 .

[60]  Pál-Andrej Nitsche,et al.  Best N Term Approximation Spaces for Tensor Product Wavelet Bases , 2006 .

[61]  Y. Meyer Ondelettes sur l'intervalle. , 1991 .

[62]  Kai Bittner,et al.  Biorthogonal Spline Wavelets on the Interval , 2005 .

[63]  H. G. ter Morsche,et al.  Splines en Wavelets , 2000 .