Screams for explanation: finetuning and naturalness in the foundations of physics

We critically analyze the rationale of arguments from finetuning and naturalness in particle physics and cosmology, notably the small values of the mass of the Higgs-boson and the cosmological constant. We identify several new reasons why these arguments are not scientifically relevant. Besides laying out why the necessity to define a probability distribution renders arguments from naturalness internally contradictory, it is also explained why it is conceptually questionable to single out assumptions about dimensionless parameters from among a host of other assumptions. Some other numerological coincidences and their problems are also discussed.

[1]  P. Shapiro,et al.  Likely Values of the Cosmological Constant , 1997, astro-ph/9701099.

[2]  Inflation after Planck: Judgment Day , 2019, 1902.03951.

[3]  Stephan Hartmann,et al.  Probabilities in physics , 2011 .

[4]  R. Wagoner,et al.  Astrophysical Bounds on the Masses of Axions and Higgs Particles , 1978 .

[5]  Porter Williams,et al.  Two Notions of Naturalness , 2018, Foundations of Physics.

[6]  J. Wells,et al.  High-scale supersymmetry, the Higgs boson mass, and gauge unification , 2017, 1706.00013.

[7]  L. Barnes The Fine-Tuning of the Universe for Intelligent Life , 2011, Publications of the Astronomical Society of Australia.

[8]  M. Dine Naturalness Under Stress , 2015, 1501.01035.

[9]  D. Merritt Cosmology and convention , 2017, 1703.02389.

[10]  R. Wagoner,et al.  Astrophysical bounds on very-low-mass axions , 1980 .

[11]  L. Randall,et al.  An Alternative to compactification , 1999, hep-th/9906064.

[12]  P. Steinhardt,et al.  Inflationary paradigm in trouble after Planck2013 , 2013, 1304.2785.

[13]  P. Steinhardt,et al.  Planck 2013 results support the cyclic universe , 2013, 1304.3122.

[14]  Jérôme Martin Cosmic Inflation: Trick or Treat? , 2019, Fine-Tuning in the Physical Universe.

[15]  R. Rattazzi,et al.  Large field excursions and approximate discrete symmetries from a clockwork axion , 2015, 1511.01827.

[16]  G. Giudice Naturally Speaking: The Naturalness Criterion and Physics at the LHC , 2008, 0801.2562.

[17]  Jérôme Martin Everything you always wanted to know about the cosmological constant problem (but were afraid to ask) , 2012, 1205.3365.

[18]  F. Wilczek Problem of Strong $P$ and $T$ Invariance in the Presence of Instantons , 1978 .

[19]  S. Glashow,et al.  Weak Interactions with Lepton-Hadron Symmetry , 1970 .

[20]  D. Baumann TASI Lectures on Inflation , 2009, 0907.5424.

[21]  G. Ellis,et al.  Multiverses and physical cosmology , 2003, astro-ph/0305292.

[22]  L. Randall,et al.  A Large mass hierarchy from a small extra dimension , 1999, hep-ph/9905221.

[23]  Jérôme Martin,et al.  Assessing the scientific status of inflation after Planck , 2019, Physical Review D.

[24]  N. Arkani-Hamed,et al.  Hierarchies without symmetries from extra dimensions , 1999, hep-ph/9903417.

[25]  Porter Williams,et al.  Naturalness, the autonomy of scales, and the 125 GeV Higgs , 2015 .

[26]  A. Grinbaum Which Fine-Tuning Arguments Are Fine? , 2009, 0903.4055.

[27]  S. Weinberg A new light boson , 1978 .

[28]  Holger Gies Introduction to the Functional RG and Applications to Gauge Theories , 2006 .

[29]  W. de Boer,et al.  Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP , 1991 .

[30]  Gerard 't Hooft,et al.  Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking , 1979 .

[31]  Introduction to Effective Field Theory , 2007, hep-th/0701053.

[32]  Roger Bonnet,et al.  Maximize the impacts of space science , 2017, Nature.

[33]  John D. Norton,et al.  Challenges to Bayesian Confirmation Theory , 2011 .

[34]  T. Appelquist,et al.  Infrared Singularities and Massive Fields , 1975 .

[35]  G. Anderson,et al.  Measures of fine tuning , 1994, hep-ph/9409419.