The IFD03 Information Fusion Demonstrator -- requirements, methodology, design, and experiences

[1]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[2]  Robert Suzic,et al.  Representation and Recognition of Uncertain Enemy Policies Using Statistical Models , 2004 .

[3]  Johan Schubert,et al.  Clustering belief functions based on attracting and conflicting metalevel evidence using Potts spin mean field theory , 2003, Inf. Fusion.

[4]  Tore Risch,et al.  Mediator-Based Evolutionary Design and Development of Image Meta-Analysis Environments , 2001, Journal of Intelligent Information Systems.

[5]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[6]  Simon Ahlberg,et al.  The IFD03 Information Fusion Demonstrator , 2004 .

[7]  Robert Suzic,et al.  Bridging the gap between information need and information acquisition , 2004 .

[8]  Pontus Svenson,et al.  Methods and System Design of the IFD03 Information Fusion Demonstrator , 2004 .

[9]  P. Horling,et al.  Building an information fusion demonstrator , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[10]  Johan Schubert,et al.  Evidential force aggregation , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[11]  Johan Schubert Clustering belief functions based on attracting and conflicting metalevel evidence , 2003, ArXiv.

[12]  John Cantwell,et al.  Conflict-based Force Aggregation , 2003, ArXiv.

[13]  Hedvig Sidenbladh,et al.  Multi-target particle filtering for the probability hypothesis density , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[14]  J. Biermann,et al.  Knowledge-based fusion of Formets: discussion of an example , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[15]  P. Horling,et al.  Adapting a commercial simulation framework to the needs of information fusion research , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[16]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[17]  Ronald P. S. Mahler,et al.  Multitarget filtering using a multitarget first-order moment statistic , 2001, SPIE Defense + Commercial Sensing.

[18]  Mats Bengtsson,et al.  Dempster–Shafer clustering using Potts spin mean field theory , 2001, Soft Comput..

[19]  James Llinas,et al.  Handbook of Multisensor Data Fusion , 2001 .

[20]  Yan Huang,et al.  The software architecture of a distributed problem-solving environment , 2000, Concurr. Pract. Exp..

[21]  James Coplien,et al.  Reevaluating the architectural metaphor: Toward piecemeal growth , 1999, IEEE Software.

[22]  Joachim Biermann HADES - A Knowledge-Based System for Message Interpretation and Situation Determination , 1998, IEA/AIE.

[23]  Lawrence A. Klein,et al.  Millimeter-Wave and Infrared Multisensor Design and Signal Processing , 1997 .

[24]  I. R. Goodman,et al.  Mathematics of Data Fusion , 1997 .

[25]  T. Lubensky,et al.  Principles of condensed matter physics , 1995 .

[26]  Johan Schubert On nonspecific evidence , 1993, Int. J. Intell. Syst..

[27]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[28]  Ivar Jacobson,et al.  Object-oriented software engineering - a use case driven approach , 1993, TOOLS.

[29]  Carsten Peterson,et al.  A New Method for Mapping Optimization Problems Onto Neural Networks , 1989, Int. J. Neural Syst..

[30]  R. B. Potts Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.