Necessary Conditions in Nonsmooth Minimization via Lower and Upper Subgradients

The paper concerns first-order necessary optimality conditions for problems of minimizing nonsmooth functions under various constraints in infinite-dimensional spaces. Based on advanced tools of variational analysis and generalized differential calculus, we derive general results of two independent types called lower subdifferential and upper subdifferential optimality conditions. The former ones involve basic/limiting subgradients of cost functions, while the latter conditions are expressed via Fréchet/regular upper subgradients in fairly general settings. All the upper subdifferential and major lower subdifferential optimality conditions obtained in the paper are new even in finite dimensions. We give applications of general optimality conditions to mathematical programs with equilibrium constraints deriving new results for this important class of intrinsically nonsmooth optimization problems.

[1]  Boris S. Mordukhovich,et al.  Sequential normal compactness versus topological normal compactness in variational analysis , 2003 .

[2]  Boris S. Mordukhovich,et al.  Restrictive metric regularity and generalized differential calculus in Banach spaces , 2004, Int. J. Math. Math. Sci..

[3]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[4]  Hubert Halkin,et al.  Implicit Functions and Optimization Problems without Continuous Differentiability of the Data , 1974 .

[5]  B. Mordukhovich,et al.  Nonsmooth sequential analysis in Asplund spaces , 1996 .

[6]  Boris S. Mordukhovich,et al.  The extremal principle and its applications to optimization and economics , 2001 .

[7]  B. Morduhovic Calculus of second-order subdifferentials in infinite dimensions , 2002 .

[8]  Jirí V. Outrata,et al.  A Generalized Mathematical Program with Equilibrium Constraints , 2000, SIAM J. Control. Optim..

[9]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[10]  D. Varberg Convex Functions , 1973 .

[11]  Michal Kočvara,et al.  Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .

[12]  Jonathan M. Borwein,et al.  A survey of subdifferential calculus with applications , 2002 .

[13]  J. J. Ye Constraint Qualifications and Necessary Optimality Conditions for Optimization Problems with Variational Inequality Constraints , 2000, SIAM J. Optim..

[14]  A. Ioffe Metric regularity and subdifferential calculus , 2000 .

[15]  J. Borwein,et al.  Survey of subdifferential calculus with applications , 1999 .

[16]  Boris S. Mordukhovich,et al.  Calculus of sequential normal compactness in variational analysis , 2003 .

[17]  On Compactly Lipschitzian Mappings , 1997 .

[18]  Boris S. Mordukhovich,et al.  Nonsmooth Characterizations of Asplund Spaces and Smooth Variational Principles , 1998 .

[19]  Boris S. Mordukhovich,et al.  On Second-Order Subdifferentials and Their Applications , 2001, SIAM J. Optim..

[20]  A. D. Ioffe,et al.  Necessary Conditions in Nonsmooth Optimization , 1984, Math. Oper. Res..

[21]  R. Phelps Convex Functions, Monotone Operators and Differentiability , 1989 .

[22]  J. J. Ye,et al.  Necessary Optimality Conditions for Optimization Problems with Variational Inequality Constraints , 1997, Math. Oper. Res..

[23]  Ruoxin Zhang,et al.  Problems of Hierarchical Optimization in Finite Dimensions , 1994, SIAM J. Optim..

[24]  R. Tyrrell Rockafellar,et al.  Characterizations of Strong Regularity for Variational Inequalities over Polyhedral Convex Sets , 1996, SIAM J. Optim..

[25]  Boris S. Mordukhovich,et al.  Extensions of generalized differential calculus in asplund spaces , 2002 .

[26]  P. Lions,et al.  Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations. , 1984 .

[27]  Jean-Pierre Aubin,et al.  Lipschitz Behavior of Solutions to Convex Minimization Problems , 1984, Math. Oper. Res..

[28]  Boris S. Mordukhovich Coderivative Analysis of Variational Systems , 2004, J. Glob. Optim..

[29]  Boris S. Mordukhovich,et al.  Coderivatives of set-valued mappings: Calculus and applications , 1997 .