Quantification of non-viscous damping in discrete linear systems

Abstract The damping forces in a multiple-degree-of-freedom engineering dynamic system may not be accurately described by the familiar ‘viscous damping model’. The purpose of this paper is to develop indices to quantify the extent of any departures from this model, in other words the amount of ‘non-viscosity’ of damping in discrete linear systems. Four indices are proposed. Two of these indices are based on the non-viscous damping matrix of the system. A third index is based on the residue matrices of the system transfer functions and the fourth is based on the (measured) complex modes of the system. The performance of the proposed indices is examined by considering numerical examples.

[1]  Maurice A. Biot,et al.  Variational Principles in Irreversible Thermodynamics with Application to Viscoelasticity , 1955 .

[2]  Etienne Balmès,et al.  Frequency Domain Identification of Structural Dynamics Using the Pole / Residue Parametrization , 1997 .

[3]  Sondipon Adhikari,et al.  IDENTIFICATION OF DAMPING: PART 1, VISCOUS DAMPING , 2001 .

[4]  E. E. Ungar,et al.  Structure-borne sound , 1974 .

[5]  Peter J. Torvik,et al.  Fractional calculus in the transient analysis of viscoelastically damped structures , 1983 .

[6]  S. Adhiakri Classical Normal Modes in Nonviscously Damped Linear Systems , 2001 .

[7]  Jim Woodhouse,et al.  LINEAR DAMPING MODELS FOR STRUCTURAL VIBRATION , 1998 .

[8]  Sondipon Adhikari Classical normal modes in nonviscously damped linear systems , 2001 .

[9]  Sondipon Adhikari,et al.  Eigenrelations for Nonviscously Damped Systems , 2001 .

[10]  Sondipon Adhikari,et al.  IDENTIFICATION OF DAMPING: PART 3, SYMMETRY-PRESERVING METHODS , 2002 .

[11]  D. Golla Dynamics of viscoelastic structures: a time-domain finite element formulation , 1985 .

[12]  D. J. Ewins,et al.  Modal Testing: Theory and Practice , 1984 .

[13]  George A. Lesieutre,et al.  Finite element modeling of frequency-dependent material damping using augmenting thermodynamic fields , 1990 .

[14]  S. Adhikari,et al.  Identification of damping: Part 1, viscous damping , 2001 .

[15]  Sondipon Adhikari,et al.  Identification of damping: Part 4, error, analysis , 2002 .

[16]  Sondipon Adhikari,et al.  Dynamics of Nonviscously Damped Linear Systems , 2002 .

[17]  Nuno M. M. Maia,et al.  On a General Model for Damping , 1998 .

[18]  O. C. Zienkiewicz,et al.  The finite element method, fourth edition; volume 2: solid and fluid mechanics, dynamics and non-linearity , 1991 .

[19]  L. Gaul,et al.  Damping description involving fractional operators , 1991 .

[20]  Lothar Gaul,et al.  The influence of damping on waves and vibrations , 1999 .

[21]  P. Hughes,et al.  Modeling of linear viscoelastic space structures , 1993 .

[22]  Daniel J. Inman,et al.  Survey of modern methods for modeling frequency dependent damping in finite element models , 1993 .

[23]  M. Shitikova,et al.  Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids , 1997 .