Nonlinear Optical Properties of Bacteriorhodopsin: Assignment of Second Order Hyperpolarizabilities of Randomly Oriented Systems Using Two-Photon Spectroscopy

Abstract We demonstrate that the second order hyperpolarizability of a randomly oriented molecule can be determined directly from two-photon spectroscopic measurements on the low-lying excited state manifold. Equations are derived which allow not only a determination of β, but also a determination of the error associated with the numerical method. We apply our two-photon technique to an analysis of the second order hyperpolarizability of light adapted bacteriorhodopsin. Our analysis of this protein in D2O at ambient temperature yields a value of β (= βxxx + (1/3)[βxyy + 2βyyx + βxzz + 2βzzx]) of (2250 ± 240) × 10−30 cm5/esu for a laser wavelength of 1.06μ (Nd:YAG fundamental). The large second-order nonlinear properties of bacteriorhodopsin are due primarily to the large change in dipole moment associated with excitation into the lowest-lying strongly allowed “1Bu +” π, π* state (Δμ = 13.5 ± 0.8 D). We derive an equation which estimates Ωβδ, the ratio of the number of second harmonic photons generated by ...

[1]  R. Birge [67] Energy levels of the visual chromophores by two-photon spectroscopy , 1982 .

[2]  Albert F. Lawrence,et al.  Biotechnology and molecular computing , 1988 .

[3]  J. Ward,et al.  Calculation of Nonlinear Optical Susceptibilities Using Diagrammatic Perturbation Theory , 1965 .

[4]  Albert F. Lawrence,et al.  A Spectroscopic, Photocalorimetric, and Theoretical Investigation of the Quantum Efficiency of the Primary Event in Bacteriorhodopsin , 1989 .

[5]  D. Oesterhelt,et al.  Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. , 1974, Methods in enzymology.

[6]  W. Stoeckenius,et al.  Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium. , 1975, Biophysical journal.

[7]  L. P. Murray,et al.  Two-photon spectroscopy of locked-11-cis-rhodopsin: evidence for a protonated Schiff base in a neutral protein binding site. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[8]  David J. Williams,et al.  Nonlinear optical properties of organic and polymeric materials , 1983 .

[9]  O. S. Mortensen,et al.  Initial and final molecular states as ‘‘virtual states’’ in two‐photon processes , 1981 .

[10]  B. Dick,et al.  Importance of initial and final states as intermediate states in two-photon spectroscopy of polar molecules , 1982 .

[11]  Michel Manfait,et al.  Spectroscopy of Biological Molecules , 1985 .

[12]  G. Ashwell,et al.  Organic Materials for Non-Linear Optics , 1989 .

[13]  Jung Y. Huang,et al.  Second-harmonic generation in purple membrane−poly(vinyl alcohol) films: probing the dipolar characteristics of the bacteriorhodopsin chromophore in bR570 and M412 , 1989 .

[14]  C. H. Brito Cruz,et al.  Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin. , 1988, Science.

[15]  Theo Rasing,et al.  Second harmonic generation from Langmuir-Blodgett films of retinal and retinal Schiff bases , 1988 .

[16]  R. Birge An Introduction to Two-Photon Spectroscopy , 1984 .

[17]  Robert R. Birge,et al.  The experimental determination of ground state dipole moments from dielectric constant measurements using ellipsoidal cavity correction factors , 1981 .

[18]  L. P. Murray,et al.  Two-photon, carbon-13 and two-dimensional proton NMR spectroscopic studies of retinyl Schiff bases, protonated Schiff bases and Schiff base salts: evidence for a protonation induced .pi..pi.* excited state level ordering reversal , 1987 .

[19]  J. Oudar,et al.  Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds , 1977 .

[20]  Brian J. Orr,et al.  Perturbation theory of the non-linear optical polarization of an isolated system , 1971 .

[21]  Robert R. Birge,et al.  A theoretical investigation of the one- and two-photon properties of porphyrins , 1986 .

[22]  R. Birge 2 – ONE-PHOTON AND TWO-PHOTON EXCITATION SPECTROSCOPY , 1983 .

[23]  W. Stoeckenius,et al.  Bacteriorhodopsin and related pigments of halobacteria. , 1982, Annual review of biochemistry.

[24]  Kenneth D. Singer,et al.  Measurements of molecular second order optical susceptibilities using dc induced second harmonic generation , 1981 .

[25]  L. P. Murray,et al.  Two-Photon Spectroscopy of Biological Molecules , 1984 .

[26]  Joseph Zyss,et al.  Nonlinear optical properties of organic molecules and crystals , 1987 .

[27]  C. W. Dirk,et al.  The contribution of π electrons to second harmonic generation in organic molecules , 1986 .

[28]  D. Metzler,et al.  Shapes of spectral bands of visual pigments , 1978, Vision Research.

[29]  L. Loew,et al.  Nonlinear optical properties of potential sensitive styryl dyes. , 1988, Biophysical journal.

[30]  Malcolm L. H. Green,et al.  Synthesis and structure of (cis)-[1-ferrocenyl-2-(4-nitrophenyl)ethylene], an organotransition metal compound with a large second-order optical nonlinearity , 1987, Nature.

[31]  D. Oesterhelt,et al.  Rhodopsin-like protein from the purple membrane of Halobacterium halobium. , 1971, Nature: New biology.

[32]  D. Oesterhelt,et al.  Early picosecond events in the photocycle of bacteriorhodopsin. , 1986, Biophysical journal.

[33]  G. E. Leroi,et al.  Two-photon spectroscopy of all-trans-retinal. Nature of the low-lying singlet states , 1982 .

[34]  A. Miziolek,et al.  Ultrasensitive Laser Spectroscopy , 1985 .

[35]  D. Oesterhelt,et al.  Reconstitution of bacteriorhodopsin , 1974, FEBS letters.

[36]  W. M. McClain,et al.  Two-Photon Molecular Spectroscopy in Liquids and Gases , 1977 .

[37]  M. C. Nuss,et al.  Femtosecond spectroscopy of the first events of the photochemical cycle in bacteriorhodopsin , 1985 .

[38]  R. Birge,et al.  A theoretical analysis of the two‐photon properties of linear polyenes and the visual chromophores , 1979 .

[39]  Yury I. Bychkov,et al.  Sov Phys Tech Phys , 1975 .

[40]  Robert R. Birge,et al.  Two-photon spectroscopy of protein-bound chromophores , 1986 .

[41]  R. Birge,et al.  Two-photon spectroscopy of the Schiff base of all-trans-retinal. Nature of the low-lying π π* singlet states , 1985 .

[42]  D. Oesterhelt,et al.  Optical picosecond studies of bacteriorhodopsin containing a sterically fixed retinal , 1984 .

[43]  Carey K. Johnson,et al.  Photochemical hole burning in bacteriorhodopsin , 1989 .

[44]  V. J. Docherty,et al.  Calculation of the second-order electronic polarizabilities of some organic molecules. Part 1 , 1985 .

[45]  Robert A. Harris,et al.  Resonance Raman excitation profiles of bacteriorhodopsin , 1983 .