LIMITS OF ADAPTIVE OPTICS FOR HIGH-CONTRAST IMAGING

The effects of photon noise, aliasing, wave front chromaticity, and scintillation on the point-spread function (PSF) contrast achievable with ground-based adaptive optics (AO) are evaluated for different wave front sensing schemes. I show that a wave front sensor (WFS) based on the Zernike phase contrast technique offers the best sensitivity to photon noise at all spatial frequencies, while the Shack-Hartmann WFS is significantly less sensitive. In AO systems performing wave front sensing in the visible and scientific imaging in the near-IR, the PSF contrast limit is set by the scintillation chromaticity induced by Fresnel propagation through the atmosphere. On an 8 m telescope, the PSF contrast is then limited to 10-4 to 10-5 in the central arcsecond. Wave front sensing and scientific imaging should therefore be done at the same wavelength, in which case, on bright sources, PSF contrasts between 10-6 and 10-7 can be achieved within 1'' on an 8 m telescope in optical/near-IR. The impact of atmospheric turbulence parameters (seeing, wind speed, turbulence profile) on the PSF contrast is quantified. I show that a focal plane wave front sensing scheme offers unique advantages, and I discuss how to implement it. Coronagraphic options are also briefly discussed.

[1]  W. Talbot Facts relating to optical science , 1836 .

[2]  F. Zernike,et al.  Diffraction Theory of the Knife-Edge Test and its Improved Form, The Phase-Contrast Method , 1934 .

[3]  B. Edĺen The Refractive Index of Air , 1966 .

[4]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[5]  C. G. Wyne Extending the bandwidth of speckle interferometry , 1979 .

[6]  F. Roddier,et al.  Twin-image holography with spectrally broad light , 1980 .

[7]  F Roddier,et al.  Curvature sensing and compensation: a new concept in adaptive optics. , 1988, Applied optics.

[8]  Farrokh Vakili,et al.  Beam Combination In Aperture Synthesis From Space: Field Of View Limitations And (U,V) Plane Coverage Optimization , 1989, Other Conferences.

[9]  F. Roddier,et al.  A SIMPLE LOW-ORDER ADAPTIVE OPTICS SYSTEM FOR NEAR-INFRARED APPLICATIONS , 1991 .

[10]  J. Angel,et al.  Ground-based imaging of extrasolar planets using adaptive optics , 1994, Nature.

[11]  Brent L. Ellerbroek,et al.  Profiles of nighttime turbulence above Mauna Kea and isoplanatism extension in adaptive optics , 1995, Optics & Photonics.

[12]  M. Shao,et al.  HIGH-DYNAMIC-RANGE IMAGING USING A DEFORMABLE MIRROR FOR SPACE CORONOGRAPHY , 1995, astro-ph/9502042.

[13]  J R Leger,et al.  Optical antialiasing filters based on complementary Golay codes. , 1997, Applied optics.

[14]  F. Roddier,et al.  STELLAR CORONOGRAPH WITH PHASE MASK , 1997 .

[15]  C. Moutou,et al.  PRESENT PERFORMANCE OF THE DARK-SPECKLE CORONAGRAPH , 1998 .

[16]  J. Hardy,et al.  Adaptive Optics for Astronomical Telescopes , 1998 .

[17]  Gordon A. H. Walker,et al.  Speckle Noise and the Detection of Faint Companions , 1999 .

[18]  A. Labeyrie,et al.  The Four-Quadrant Phase-Mask Coronagraph. I. Principle , 2000 .

[19]  P. Baudoz,et al.  Achromatic interfero coronagraphy I. Theoretical capabilities for ground-based observations , 2000 .

[20]  C. Marois,et al.  Efficient Speckle Noise Attenuation in Faint Companion Imaging , 2000 .

[21]  Eric E. Bloemhof,et al.  Behavior of Remnant Speckles in an Adaptively Corrected Imaging System , 2001 .

[22]  D. Spergel,et al.  Notch-Filter Masks: Practical Image Masks for Planet-finding Coronagraphs , 2002, astro-ph/0209271.

[23]  R. Paul Butler,et al.  Scientific Frontiers in Research on Extrasolar Planets , 2003 .

[24]  C. Aime,et al.  Stellar coronagraphy with prolate apodized circular apertures , 2003 .

[25]  J. K. Wallace,et al.  Phase contrast techniques for wavefront sensing and calibration in adaptive optics , 2003, SPIE Optics + Photonics.

[26]  Roberto Gilmozzi,et al.  Critical science for the largest telescopes: science drivers for a 100m ground-based optical-IR telescope , 2003, SPIE Astronomical Telescopes + Instrumentation.

[27]  C. Aime,et al.  Achromatic dual-zone phase mask stellar coronagraph , 2003 .

[28]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[29]  R. Vanderbei,et al.  Extrasolar Planet Finding via Optimal Apodized-Pupil and Shaped-Pupil Coronagraphs , 2003 .

[30]  Eric E. Bloemhof Suppression of Speckle Noise by Speckle Pinning in Adaptive Optics , 2003 .

[31]  GROUND-BASED NEAR-INFRARED IMAGING OF THE HD 141569 CIRCUMSTELLAR DISK , 2002, astro-ph/0211648.

[32]  Michael C. B. Ashley,et al.  Exceptional astronomical seeing conditions above Dome C in Antarctica , 2004, Nature.

[33]  Olivier Guyon,et al.  Imaging Faint Sources within a Speckle Halo with Synchronous Interferometric Speckle Subtraction , 2004 .

[34]  Claude Aime,et al.  The Usefulness and Limits of Coronagraphy in the Presence of Pinned Speckles , 2004 .

[35]  Roberto Gilmozzi Science and technology drivers for future giant telescopes , 2004, SPIE Astronomical Telescopes + Instrumentation.

[36]  A. Kostinski,et al.  One-sided Achromatic Phase Apodization for Imaging of Extrasolar Planets , 2004 .

[37]  Christophe Verinaud,et al.  On the nature of the measurements provided by a pyramid wave-front sensor , 2004 .

[38]  S. Ridgway,et al.  Exoplanet Imaging with a Phase-induced Amplitude Apodization Coronagraph. I. Principle , 2004, astro-ph/0412179.

[39]  Johanan L. Codona,et al.  Imaging extrasolar planets by stellar halo suppression in separately corrected color bands , 2004 .

[40]  B. Macintosh,et al.  Spatially filtered wave-front sensor for high-order adaptive optics. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[41]  Mark Chun,et al.  Optical Turbulence Profiles at Mauna Kea Measured by MASS and SCIDAR , 2005 .

[42]  C. Vérinaud,et al.  Adaptive optics for high‐contrast imaging: pyramid sensor versus spatially filtered Shack–Hartmann sensor , 2005 .