Absorption coefficient (ABSCO) tables for the Orbiting Carbon Observatories: Version 5.1

[1]  Jonathan H. Jiang,et al.  FTS measurements of O2 collision-induced absorption in the 565–700 nm region using a high pressure gas absorption cell , 2019, Journal of Quantitative Spectroscopy and Radiative Transfer.

[2]  W. J. van der Zande,et al.  Update of the HITRAN collision-induced absorption section , 2019, Icarus.

[3]  J. Hodges,et al.  Twenty-Five-Fold Reduction in Measurement Uncertainty for a Molecular Line Intensity. , 2019, Physical review letters.

[4]  Annmarie Eldering,et al.  How bias correction goes wrong: measurement of XCO2 affected by erroneous surface pressure estimates , 2019, Atmospheric Measurement Techniques.

[5]  David Crisp,et al.  Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm , 2018, Atmospheric Measurement Techniques.

[6]  R. Pavlick,et al.  The OCO-3 mission; measurement objectives and expected performance based on one year of simulated data , 2018 .

[7]  Franck Thibault,et al.  Recent advances in collisional effects on spectra of molecular gases and their practical consequences , 2018, Journal of Quantitative Spectroscopy and Radiative Transfer.

[8]  W. J. van der Zande,et al.  O2−O2 and O2−N2 collision-induced absorption mechanisms unravelled , 2018, Nature Chemistry.

[9]  Keeyoon Sung,et al.  High accuracy absorption coefficients for the Orbiting Carbon Observatory-2 (OCO-2) mission: Validation of updated carbon dioxide cross-sections using atmospheric spectra , 2017 .

[10]  D. Romanini,et al.  Water vapor self-continuum absorption measurements in the 4.0 and 2.1 µm transparency windows , 2017 .

[11]  D. Crisp,et al.  High‐accuracy measurements of total column water vapor from the Orbiting Carbon Observatory‐2 , 2016 .

[12]  D. Romanini,et al.  Accurate laboratory determination of the near‐infrared water vapor self‐continuum: A test of the MT_CKD model , 2016 .

[13]  Yu Liu,et al.  Modelling of XCO2 Surfaces Based on Flight Tests of TanSat Instruments , 2016, Sensors.

[14]  James McDuffie,et al.  Quantification of uncertainties in OCO-2 measurements of XCO 2 :simulations and linear error analysis , 2016 .

[15]  David Crisp,et al.  The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products , 2016 .

[16]  Keeyoon Sung,et al.  Line parameters including temperature dependences of air- and self-broadened line shapes of 12 C 16 O 2 : 2.06-μm region , 2016 .

[17]  Keeyoon Sung,et al.  Line parameters including temperature dependences of self- and air-broadened line shapes of 12 C 16 O 2 : 1.6-μm region , 2016 .

[18]  Keeyoon Sung,et al.  Multispectrum analysis of the oxygen A-band. , 2016, Journal of quantitative spectroscopy & radiative transfer.

[19]  D. O'Brien,et al.  Sensitivity of remotely sensed trace gas concentrations to polarisation , 2015 .

[20]  D. Romanini,et al.  Accurate measurements and temperature dependence of the water vapor self-continuum absorption in the 2.1 μm atmospheric window. , 2015, The Journal of chemical physics.

[21]  D. Mondelain,et al.  Temperature dependence of the water vapor self‐continuum by cavity ring‐down spectroscopy in the 1.6 µm transparency window , 2014 .

[22]  Christopher W. O'Dell,et al.  Performance of a geostationary mission, geoCARB, to measure CO 2 , CH 4 and CO column-averaged concentrations , 2013 .

[23]  Rebecca Castano,et al.  Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission , 2012 .

[24]  J. Hodges,et al.  Frequency-stabilized cavity ring-down spectroscopy measurements of line mixing and collision-induced absorption in the O2 A-band. , 2012, The Journal of chemical physics.

[25]  David A. Long,et al.  On spectroscopic models of the O2 A‐band and their impact upon atmospheric retrievals , 2012 .

[26]  W. J. Lafferty,et al.  The water vapour self- and water–nitrogen continuum absorption in the 1000 and 2500 cm−1 atmospheric windows , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  Jean-Luc Moncet,et al.  Development and recent evaluation of the MT_CKD model of continuum absorption , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  Rebecca Castano,et al.  The ACOS CO 2 retrieval algorithm – Part 1: Description and validation against synthetic observations , 2011 .

[29]  W. J. van der Zande,et al.  The effect of collisions with nitrogen on absorption by oxygen in the A-band using cavity ring-down spectroscopy. , 2011 .

[30]  James B. Abshire,et al.  Calibration of the Total Carbon Column Observing Network using aircraft profile data , 2010 .

[31]  W. J. van der Zande,et al.  Line mixing and collision induced absorption in the oxygen A-band using cavity ring-down spectroscopy. , 2010, The Journal of chemical physics.

[32]  David A. Long,et al.  O2 A-band line parameters to support atmospheric remote sensing , 2010 .

[33]  Masakatsu Nakajima,et al.  Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. , 2009, Applied optics.

[34]  L. Brown,et al.  Line strength measurements of carbonyl sulfide (16O12C32S) in the 2v3, v1+2v2+v3, and 4v2+v3 bands , 2009 .

[35]  Scott C. Doney,et al.  Carbon source/sink information provided by column CO 2 measurements from the Orbiting Carbon Observatory , 2008 .

[36]  Jean-Michel Hartmann,et al.  An improved O2 A band absorption model and its consequences for retrievals of photon paths and surface pressures , 2008 .

[37]  L. Brown,et al.  Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy , 2008 .

[38]  Shepard A. Clough,et al.  Retrieving Liquid Wat0er Path and Precipitable Water Vapor From the Atmospheric Radiation Measurement (ARM) Microwave Radiometers , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[39]  François-Marie Bréon,et al.  Contribution of the Orbiting Carbon Observatory to the estimation of CO2 sources and sinks: Theoretical study in a variational data assimilation framework , 2007 .

[40]  David Crisp,et al.  Precision requirements for space-based XCO2 data , 2007 .

[41]  Jean-Michel Hartmann,et al.  Line mixing and collision-induced absorption by oxygen in the A band: Laboratory measurements, model, and tools for atmospheric spectra computations , 2006 .

[42]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[43]  Michele Bugliesi,et al.  Communication and mobility control in boxed ambients , 2005, Inf. Comput..

[44]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[45]  D. A. Newnham,et al.  Near‐infrared absorption cross sections and integrated absorption intensities of molecular oxygen (O2, O2‐O2, and O2‐N2) , 2000 .

[46]  K. Smith,et al.  Near-infrared absorption spectroscopy of oxygen and nitrogen gas mixtures , 1999 .

[47]  J. Hartmann,et al.  Experimental and theoretical study of line mixing in methane spectra. I. The N2-broadened ν3 band at room temperature , 1999 .

[48]  E. J. Allin,et al.  Interpretation of the visible and near-infrared absorption spectra of compressed oxygen as collision-induced electronic transitions , 1969 .

[49]  C. Cho,et al.  EFFECT OF HIGH PRESSURES ON THE INFRARED AND RED ATMOSPHERIC ABSORPTION BAND SYSTEMS OF OXYGEN , 1963 .

[50]  B. Drouin,et al.  Pressure broadening of oxygen by water , 2014 .

[51]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[52]  A. Mckellar,et al.  Collision-Induced Vibrational and Electronic Spectra of Gaseous Oxygen at Low Temperatures , 1972 .