Clocked Domain Wall Logic Using Magnetoelectric Effects

A new digital device scheme based on the magnetoelectric coupling and automotion of the magnetic domain wall is proposed. A single device is composed of a ferromagnetic wire and two ferroelectric capacitors served as the input and the output. It is shown that with the initialization in the magnetic states, a single device and the corresponding majority gate can realize the NOT, NAND, and NOR functions. Furthermore, the device has the cascadability, input-output isolation, gain, and nonreciprocity. The device concepts are justified by the numerical calculation, including the Landau-Lifshitz-Gilbert equation for the magnetization dynamics, the Landau-Khalatnikov equation for the electric polarization dynamics, and the electrostatic equations for the open-circuit output voltage and the charge sharing process between devices. The energy dissipation is also quantified and shown to be two to three orders of magnitude less than that in spin-torque-driven devices.

[1]  T. Ghani,et al.  Proposal of a Spin Torque Majority Gate Logic , 2010, IEEE Electron Device Letters.

[2]  Dejan Markovic,et al.  Design of a Fast and Low-Power Sense Amplifier and Writing Circuit for High-Speed MRAM , 2015, IEEE Transactions on Magnetics.

[3]  M. Fiebig Revival of the magnetoelectric effect , 2005 .

[4]  A. Tulapurkar,et al.  Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. , 2009, Nature nanotechnology.

[5]  C. Binek,et al.  Robust isothermal electric switching of interface magnetization: A route to voltage-controlled spintronics , 2010, 1004.3763.

[6]  Paul P. Horley,et al.  Influence of magnetoelectric coupling on electric field induced magnetization reversal in a composite unstrained multiferroic chain , 2012, 1201.4740.

[7]  Hideo Ohno,et al.  Control of magnetism by electric fields. , 2015, Nature nanotechnology.

[8]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[9]  Kang L. Wang,et al.  Voltage-induced ferromagnetic resonance in magnetic tunnel junctions. , 2012, Physical review letters.

[10]  Daining Fang,et al.  Size-dependent ferroelectric behaviors of BaTiO3 nanowires , 2008 .

[11]  Andrew B. Kahng,et al.  A power-constrained MPU roadmap for the International Technology Roadmap for Semiconductors (ITRS) , 2009, 2009 International SoC Design Conference (ISOCC).

[12]  R. Ramesh,et al.  Multiferroics: progress and prospects in thin films. , 2007, Nature materials.

[13]  Tsu-Jae King Liu,et al.  CMOS and beyond : logic switches for terascale integrated circuits , 2015 .

[14]  Dmitri E. Nikonov,et al.  Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. , 2011, Physical review letters.

[15]  Dmitri E. Nikonov,et al.  Automotion of domain walls for spintronic interconnects , 2014 .

[16]  C. Vittoria,et al.  Electrically controlled magnetization switching in a multiferroic heterostructure , 2010 .

[17]  I. Young,et al.  Design and Analysis of Copper and Aluminum Interconnects for All-Spin Logic , 2014, IEEE Transactions on Electron Devices.

[18]  J. Miltat,et al.  Magnetic domain walls displacement: Automotion versus spin-transfer torque , 2010, 1007.5233.

[19]  Yanwei Ma,et al.  Direct observation of nanometer-scale amorphous layers and oxide crystallites at grain boundaries in polycrystalline Sr1-xKxFe2As2 superconductors , 2011, 1104.5372.

[20]  Wei-gang Wang,et al.  Electric-field-assisted switching in magnetic tunnel junctions. , 2012, Nature materials.

[21]  Dmitri E. Nikonov,et al.  Benchmarking spintronic logic devices based on magnetoelectric oxides , 2014 .

[22]  Dmitri E. Nikonov,et al.  Benchmarking of Beyond-CMOS Exploratory Devices for Logic Integrated Circuits , 2015, IEEE Journal on Exploratory Solid-State Computational Devices and Circuits.

[23]  J. Melngailis,et al.  In situ observation of reversible nanomagnetic switching induced by electric fields. , 2010, Nano letters.

[24]  R. Ramesh,et al.  Deterministic switching of ferromagnetism at room temperature using an electric field , 2014, Nature.

[25]  D. Ralph,et al.  Spin transfer torques , 2007, 0711.4608.

[26]  S. Yuasa,et al.  Giant Tunnel Magnetoresistance in Magnetic Tunnel Junctions with a Crystalline MgO(0 0 1) Barrier , 2009 .

[27]  S. van Dijken,et al.  Electrical Writing of Magnetic Domain Patterns in Ferromagnetic/Ferroelectric Heterostructures , 2011, IEEE Transactions on Magnetics.

[28]  Supriyo Datta,et al.  Non-volatile spin switch for Boolean and non-Boolean logic , 2012 .

[29]  S. Ducharme,et al.  Ferroelectric control of magnetic anisotropy. , 2011, Nano letters.

[30]  C. Vittoria,et al.  Tunable fringe magnetic fields induced by converse magnetoelectric coupling in a FeGa/PMN-PT multiferroic heterostructure , 2011 .

[31]  S. Datta,et al.  Proposal for an all-spin logic device with built-in memory. , 2010, Nature nanotechnology.

[32]  Yoichi Shiota,et al.  Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. , 2011, Nature materials.

[33]  Y. Srivastava,et al.  Physical Kinetics of Ferroelectric Hysteresis , 2001, cond-mat/0106549.

[34]  D. Xue,et al.  Mechanism of interfacial magnetoelectric coupling in composite multiferroics , 2014 .

[35]  J. G. Alzate,et al.  Voltage-induced switching of nanoscale magnetic tunnel junctions , 2012, 2012 International Electron Devices Meeting.

[36]  Azad Naeemi,et al.  Interconnects for All-Spin Logic Using Automotion of Domain Walls , 2015, IEEE Journal on Exploratory Solid-State Computational Devices and Circuits.

[37]  I. Young,et al.  Design and Analysis of Si Interconnects for All-Spin Logic , 2014, IEEE Transactions on Magnetics.

[38]  Yang Shen,et al.  Optimizing direct magnetoelectric coupling in Pb(Zr,Ti)O3/Ni multiferroic film heterostructures , 2015 .

[39]  D. Xue,et al.  Electric tuning of magnetization dynamics and electric field-induced negative magnetic permeability in nanoscale composite multiferroics , 2015, Scientific Reports.

[40]  S. Yuasa,et al.  Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO(0 0 1) barrier , 2007 .

[41]  W. Williams,et al.  A generalization of the demagnetizing tensor for nonuniform magnetization , 1993 .

[42]  E. Wang,et al.  Magnetoelectric coupling and electric control of magnetization in ferromagnet/ferroelectric/ normal-metal superlattices , 2009, 0910.1031.

[43]  C. Binek,et al.  Robust isothermal electric control of exchange bias at room temperature. , 2010, Nature materials.

[44]  Sachin S. Sapatnekar,et al.  Spin-Based Computing: Device Concepts, Current Status, and a Case Study on a High-Performance Microprocessor , 2015, Proceedings of the IEEE.

[45]  J. F. Webb,et al.  On the Physics of Ferroelectrics , 2003, Science progress.

[46]  J. Hlinka,et al.  Phenomenological model of a 90° domain wall inBaTiO3-type ferroelectrics , 2006 .

[47]  Jacques Miltat,et al.  Domain wall dynamics in nanowires , 2002 .