A Micro Gas Sensor Using TiO2 Nanotubes to Detect Volatile Organic Compounds

To develop a portable gas sensor with low power consumption, we deposited a micro size sensing film (100×100 µm2) on a Si substrate with an integrated micro heater and electrodes constructed using micro-electro-mechanical system (MEMS) technology. TiO2 nanotubes ca. 500 nm long with a 50 nm diameter were used to sense and detect volatile organic compounds (VOCs). We demonstrate that the MEMS sensor responded well to ethanol and toluene in air at elevated temperatures, such as 500 °C, which suggests that it is a promising battery-operable micro gas sensor for detecting VOCs.

[1]  Ichiro Matsubara,et al.  Preparation of layered organic–inorganic nanohybrid thin films of molybdenum trioxide with polyaniline derivatives for aldehyde gases sensors of several tens ppb level , 2008 .

[2]  Chenglu Lin,et al.  Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors , 2004 .

[3]  Quanfang Chen,et al.  Micromachined nanocrystalline silver doped SnO2 H2S sensor , 2006 .

[4]  Sudipta Seal,et al.  Micromachined nanocrystalline SnO2 chemical gas sensors for electronic nose , 2004 .

[5]  Kuniyuki Izawa,et al.  Development of CH4 Sensor Using MEMS Technology for Battery Operated Town Gas Leak Detector , 2011 .

[6]  Wei-Han Tao,et al.  H2S sensing properties of noble metal doped WO3 thin film sensor fabricated by micromachining , 2002 .

[7]  Toru Maekawa,et al.  Development of a WO3 thick-film-based sensor for the detection of VOC , 2005 .

[8]  Tetsuya Kida,et al.  Microstructure control of TiO2 nanotubular films for improved VOC sensing , 2011 .

[9]  W. Shin,et al.  Sensing performance of thermoelectric hydrogen sensor for breath hydrogen analysis , 2009 .

[10]  Tetsuya Kida,et al.  Synthesis of monodispersed SnO2 nanocrystals and their remarkably high sensitivity to volatile organic compounds , 2010 .

[11]  Tetsuya Kida,et al.  Gas sensing characteristics and porosity control of nanostructured films composed of TiO2 nanotubes , 2009 .

[12]  Andrea Zappettini,et al.  Aldehyde detection by ZnO tetrapod-based gas sensors , 2011 .

[13]  Changsheng Xie,et al.  Preparation and gas-sensing properties of Ce-doped ZnO thin-film sensors by dip-coating , 2007 .

[14]  Dan Wang,et al.  Gas-sensing properties of sensors based on single-crystalline SnO2 nanorods prepared by a simple molten-salt method , 2006 .

[15]  A. K. Srivastava,et al.  Detection of volatile organic compounds (VOCs) using SnO2 gas-sensor array and artificial neural network , 2003 .

[16]  N. Yamazoe,et al.  Gas sensor using noble metal-loaded TiO2 nanotubes for detection of large-sized volatile organic compounds , 2011 .

[17]  W. Y. Wang,et al.  Improvement in gas sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding TiO2 , 2004 .

[18]  Duk-Dong Lee,et al.  Fabrication and characteristics of SnO2 gas sensor array for volatile organic compounds recognition , 2002 .

[19]  M. Ju,et al.  High sensitivity ethanol gas sensor integrated with a solid-state heater and thermal isolation improvement structure for legal drink-drive limit detecting , 1998 .

[20]  Ichiro Matsubara,et al.  VOCs sensing properties of layered organic–inorganic hybrid thin films: MoO3 with various interlayer organic components , 2008 .

[21]  Li Wang,et al.  NO2 sensing characteristics of WO3 thin film microgas sensor , 2003 .