Crowding of molecular motors determines microtubule depolymerization.

The assembly and disassembly dynamics of microtubules (MTs) is tightly controlled by MT-associated proteins. Here, we investigate how plus-end-directed depolymerases of the kinesin-8 family regulate MT depolymerization dynamics. Using an individual-based model, we reproduce experimental findings. Moreover, crowding is identified as the key regulatory mechanism of depolymerization dynamics. Our analysis reveals two qualitatively distinct regimes. For motor densities above a particular threshold, a macroscopic traffic jam emerges at the plus-end and the MT dynamics become independent of the motor concentration. Below this threshold, microscopic traffic jams at the tip arise that cancel out the effect of the depolymerization kinetics such that the depolymerization speed is solely determined by the motor density. Because this density changes over the MT length, length-dependent regulation is possible. Remarkably, motor cooperativity affects only the end-residence time of depolymerases and not the depolymerization speed.

[1]  M. Kirschner,et al.  Dynamic instability of microtubule growth , 1984, Nature.

[2]  J. McIntosh,et al.  Microtubule depolymerization by the Kinesin-8 motor Kip3p: a mathematical model. , 2008, Biophysical journal.

[3]  R. Lipowsky,et al.  Traffic of Molecular Motors Through Tube-Like Compartments , 2003, cond-mat/0304681.

[4]  Erwin Frey,et al.  Anomalous relaxation kinetics of biological lattice–ligand binding models , 2002, cond-mat/0202076.

[5]  E. Mandelkow,et al.  Dynamics and cooperativity of microtubule decoration by the motor protein kinesin. , 2001, Journal of molecular biology.

[6]  T. Nieuwenhuizen,et al.  UvA-DARE ( Digital Academic Repository ) Random walks of cytoskeletal motors in open and closed compartments , 2001 .

[7]  A. Hyman,et al.  Reconstitution of Physiological Microtubule Dynamics Using Purified Components , 2001, Science.

[8]  Jonathon Howard,et al.  Kinesin-8 Motors Act Cooperatively to Mediate Length-Dependent Microtubule Depolymerization , 2009, Cell.

[9]  I. A. Telley,et al.  Obstacles on the microtubule reduce the processivity of Kinesin-1 in a minimal in vitro system and in cell extract. , 2009, Biophysical journal.

[10]  I. Vernos,et al.  The Mitotic Spindle: A Self-Made Machine , 2001, Science.

[11]  J. J. Ward,et al.  A theory of microtubule catastrophes and their regulation , 2009, Proceedings of the National Academy of Sciences.

[12]  Erwin Frey,et al.  Totally asymmetric simple exclusion process with Langmuir kinetics. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Jonathon Howard,et al.  The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends , 2006, Nature.

[14]  Linda Wordeman,et al.  The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. , 2008, Developmental cell.

[15]  Anthony A. Hyman,et al.  Growth, fluctuation and switching at microtubule plus ends , 2009, Nature Reviews Molecular Cell Biology.

[16]  David J. Odde,et al.  Chromosome Congression by Kinesin-5 Motor-Mediated Disassembly of Longer Kinetochore Microtubules , 2008, Cell.

[17]  A. Hyman,et al.  Microtubule polymerases and depolymerases. , 2007, Current opinion in cell biology.

[18]  S. Leibler,et al.  Physical aspects of the growth and regulation of microtubule structures. , 1993, Physical review letters.

[19]  Jacqueline Hayles,et al.  A journey into space , 2001, Nature Reviews Molecular Cell Biology.

[20]  Thomas Franosch,et al.  Collective phenomena in intracellular processes. , 2004, Genome informatics. International Conference on Genome Informatics.

[21]  I. Tolic-Nørrelykke Force and length regulation in the microtubule cytoskeleton: lessons from fission yeast. , 2010, Current opinion in cell biology.

[22]  F. Nédélec,et al.  Force- and length-dependent catastrophe activities explain interphase microtubule organization in fission yeast , 2008, Molecular systems biology.

[23]  R. Ohi,et al.  Microtubule-depolymerizing kinesins. , 2013, Annual review of cell and developmental biology.

[24]  T. Mitchison,et al.  Microtubule polymerization dynamics. , 1997, Annual review of cell and developmental biology.

[25]  R. Ohi,et al.  The Kinesin-8 Kif18A Dampens Microtubule Plus-End Dynamics , 2010, Current Biology.

[26]  R A Milligan,et al.  Kinesin follows the microtubule's protofilament axis , 1993, The Journal of cell biology.

[27]  Mohan L Gupta,et al.  Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle , 2006, Nature Cell Biology.

[28]  Bottleneck-induced transitions in a minimal model for intracellular transport. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  J. Howard,et al.  The movement of kinesin along microtubules. , 1996, Annual review of physiology.

[30]  Erwin Frey,et al.  Phase coexistence in driven one-dimensional transport. , 2003, Physical review letters.

[31]  Gary J. Brouhard,et al.  XMAP215 Is a Processive Microtubule Polymerase , 2008, Cell.

[32]  C. Tischer,et al.  Force- and kinesin-8-dependent effects in the spatial regulation of fission yeast microtubule dynamics , 2009, Molecular systems biology.

[33]  T. Toda,et al.  Fission yeast kinesin-8 Klp5 and Klp6 are interdependent for mitotic nuclear retention and required for proper microtubule dynamics. , 2008, Molecular biology of the cell.

[34]  M. Wagenbach,et al.  Catalysis of the microtubule on-rate is the major parameter regulating the depolymerase activity of MCAK , 2009, Nature Structural &Molecular Biology.

[35]  Timothy J Mitchison,et al.  Animal cytokinesis: from parts list to mechanisms. , 2006, Annual review of biochemistry.

[36]  R. Lipowsky,et al.  Effects of the chemomechanical stepping cycle on the traffic of molecular motors. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  J. McIntosh,et al.  Kinesin-8 from fission yeast: a heterodimeric, plus-end-directed motor that can couple microtubule depolymerization to cargo movement. , 2008, Molecular biology of the cell.

[38]  G. C. Rogers,et al.  Microtubule motors in mitosis , 2000, Nature.

[39]  Stefan Hümmer,et al.  The Human Kinesin Kif18A Is a Motile Microtubule Depolymerase Essential for Chromosome Congression , 2007, Current Biology.

[40]  Anthony A. Hyman,et al.  Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner , 2006, Nature Cell Biology.

[41]  Anthony A. Hyman,et al.  Dynamics and mechanics of the microtubule plus end , 2022 .

[42]  N. Hirokawa,et al.  Kinesin superfamily motor proteins and intracellular transport , 2009, Nature Reviews Molecular Cell Biology.

[43]  Frank Jülicher,et al.  Filament depolymerization by motor molecules. , 2005, Physical review letters.