A Bridge Between Geometric Measure Theory and Signal Processing: Multifractal Analysis

We describe the main features of wavelet techniques in multifractal analysis, using wavelet bases both as a tool for analysis, and for synthesis. We focus on two promising developments: We introduce the quantile leader method, which allows to put into light nonconcave multifractal spectra; we also test recent extensions of multifractal techniques fitted to functions that are not locally bounded but only belong to an L q space (determination of the q-spectrum).

[1]  S. Jaffard,et al.  Methodology for multifractal analysis of heart rate variability: From LF/HF ratio to wavelet leaders , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[2]  Michael Frazier,et al.  Studies in Advanced Mathematics , 2004 .

[3]  A new multifractal formalism based on wavelet leaders: detection of non concave and non increasing spectra (Part I) , 2014 .

[4]  L. D. Pitt,et al.  Local nondeterminism and Hausdorff dimension , 1986 .

[5]  S. Jaffard Wavelet Techniques in Multifractal Analysis , 2004 .

[6]  Hugo Touchette,et al.  Nonconcave Entropies in Multifractals and the Thermodynamic Formalism , 2006 .

[7]  Patrice Abry,et al.  Wavelet leaders and bootstrap for multifractal analysis of images , 2009, Signal Process..

[8]  Stéphane Jaffard,et al.  Multifractal formalism for functions part I: results valid for all functions , 1997 .

[9]  B. Mandelbrot The Variation of Certain Speculative Prices , 1963 .

[10]  T. Tao On the Almost Everywhere Convergence of Wavelet Summation Methods , 1996 .

[11]  Patrice Abry,et al.  Analyse multifractale d’images : l’apport des coefficients dominants , 2009 .

[12]  Patrice Abry,et al.  Function Spaces Vs. Scaling Functions: Tools for Image Classification , 2011 .

[13]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[14]  Stéphane Jaffard,et al.  The spectrum of singularities of Riemann's function , 1996 .

[15]  Stéphane Jaffard,et al.  Wavelet Analysis of Fractal Boundaries. Part 2: Multifractal Analysis , 2005 .

[16]  P. Abry,et al.  Bootstrap for Empirical Multifractal Analysis , 2007, IEEE Signal Processing Magazine.

[17]  S. Jaffard,et al.  Wavelet Leaders in Multifractal Analysis , 2006 .

[18]  Stéphane Seuret,et al.  Diophantine approximation by orbits of expanding Markov maps , 2012, Ergodic Theory and Dynamical Systems.

[19]  A. Fan,et al.  Multifractal analysis of some multiple ergodic averages , 2012, 1212.2764.

[20]  The Variation of Certain Speculative Prices Author ( s ) : , 2007 .

[21]  A. Obukhov Some specific features of atmospheric turbulence , 1962 .

[22]  Arnaud Durand,et al.  Multifractal analysis of Lévy fields , 2012 .

[23]  Jean-Marie Aubry,et al.  On the rate of pointwise divergence of Fourier and wavelet series in Lp , 2006, J. Approx. Theory.

[24]  Murad S. Taqqu,et al.  Theory and applications of long-range dependence , 2003 .

[25]  A. Kolmogorov,et al.  The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[26]  A. Kolmogorov A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number , 1962, Journal of Fluid Mechanics.

[27]  S. Jaffard,et al.  Irregularities and Scaling in Signal and Image Processing: Multifractal Analysis , 2012, 1210.0482.

[28]  J. Aubry,et al.  Random Wavelet Series , 2002 .

[29]  Wei Lin,et al.  Wavelet Analysis and Applications , 2011 .

[30]  S. Jaffard,et al.  A pure jump Markov process with a random singularity spectrum , 2009, 0907.0104.

[31]  Stéphane Jaffard,et al.  Wavelet techniques for pointwise regularity , 2006 .

[32]  M. Lapidus,et al.  Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot , 2004 .

[33]  Patrice Abry,et al.  The contribution of wavelets in multifractal analysis , 2007 .

[34]  F. Bayart,et al.  Multifractal analysis of the divergence of Fourier series: The extreme cases , 2011, 1103.3027.

[35]  Eiichi Watanabe,et al.  MultiScale wavelet p-leader based heart rate variability analysis for survival probability assessment in CHF patients , 2014, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[36]  Stéphane Jaffard,et al.  Multifractal formalism for functions part II: self-similar functions , 1997 .

[37]  Patrice Abry,et al.  Extending multifractal analysis to negative regularity: P-exponents and P-leaders , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[38]  B. Haas,et al.  Quelques interactions entre analyse, probabilités et fractals , 2010 .

[39]  U. Frisch FULLY DEVELOPED TURBULENCE AND INTERMITTENCY , 1980 .

[40]  A. M. Oboukhov Some specific features of atmospheric tubulence , 1962, Journal of Fluid Mechanics.

[41]  Michael Frame,et al.  Benoit Mandelbrot: A Life in Many Dimensions , 2015 .

[42]  Arnaud Durand,et al.  LOCAL MULTIFRACTAL ANALYSIS , 2012, 1209.3905.

[43]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[44]  Stéphane Jaffard,et al.  Wavelet Analysis of Fractal Boundaries. Part 1: Local Exponents , 2005 .

[45]  Yann Gousseau,et al.  Are Natural Images of Bounded Variation? , 2001, SIAM J. Math. Anal..

[46]  Laurent E. Calvet,et al.  A Multifractal Model of Asset Returns , 1997 .

[47]  B. Torrésani,et al.  Wavelets: Mathematics and Applications , 1994 .

[48]  S. Mallat A wavelet tour of signal processing , 1998 .

[49]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[50]  A. Zygmund,et al.  Local properties of solutions of elliptic partial di erential equations , 1961 .

[51]  A characterization of the Peano derivative , 1970 .

[52]  DISTRIBUTIONS DONT TOUS LES COEFFICIENTS D'ONDELETTES SONT NULS , 1994 .

[53]  S. Jaffard The multifractal nature of Lévy processes , 1999 .

[54]  Patrice Abry,et al.  p-Leader Based Classification of First Stage Intrapartum Fetal HRV , 2014 .

[55]  S. E. Kelly,et al.  Pointwise convergence of wavelet expansions , 1994, math/9401221.

[56]  Yimin Xiao Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields , 1997 .

[57]  J. Romanowska,et al.  On the dimension of the graph of the classical Weierstrass function , 2013, 1309.3759.

[58]  Jensen,et al.  Fractal measures and their singularities: The characterization of strange sets. , 1987, Physical review. A, General physics.

[59]  J. Barral,et al.  On the Estimation of the Large Deviations Spectrum , 2011 .

[60]  Michael Ghil,et al.  Turbulence and predictability in geophysical fluid dynamics and climate dynamics , 1985 .

[61]  Stéphane Jaffard,et al.  Beyond Besov Spaces, Part 2: Oscillation Spaces , 2003 .

[62]  S. Krantz Fractal geometry , 1989 .

[63]  Patrice Abry,et al.  Wavelet leader based multifractal analysis , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[64]  K. Falconer Techniques in fractal geometry , 1997 .

[65]  A. Kolmogorov Dissipation of energy in the locally isotropic turbulence , 1941, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[66]  S. Jaffard,et al.  Analyse multifractale d'image : l'apport des coecients dominants , 2007 .

[67]  Stéphane Jaffard,et al.  Oscillation spaces: Properties and applications to fractal and multifractal functions , 1998 .