Effect of different gel electrolytes on graphene-based solid-state supercapacitors

A solid-state supercapacitor with a flexible, simple structure based on graphene thin film electrodes and acid/base/salt–PVA gel electrolytes is reported. The performance of six different gel electrolytes (H3PO4, H2SO4, KOH, NaOH, KCl, NaCl) in this graphene-based supercapacitor are investigated. The electrochemical properties of this highly flexible, stable supercapacitor are enhanced by optimizing the concentration of the electrolyte in polymer gel.

[1]  Miao Zhu,et al.  Highly flexible and adaptable, all-solid-state supercapacitors based on graphene woven-fabric film electrodes. , 2014, Small.

[2]  Zhong Lin Wang,et al.  Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. , 2011, Angewandte Chemie.

[3]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[4]  Qiao Chen,et al.  Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers. , 2013, Physical chemistry chemical physics : PCCP.

[5]  Yuyuan Tian,et al.  Measurement of the quantum capacitance of graphene. , 2009, Nature nanotechnology.

[6]  P. Taberna,et al.  Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors , 2003 .

[7]  Shuhong Yu,et al.  Flexible graphene–polyaniline composite paper for high-performance supercapacitor , 2013 .

[8]  Luzhuo Chen,et al.  Highly flexible and all-solid-state paperlike polymer supercapacitors. , 2010, Nano letters.

[9]  R. Ruoff,et al.  Graphene-based ultracapacitors. , 2008, Nano letters.

[10]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[11]  Chaohe Xu,et al.  Graphene-based electrodes for electrochemical energy storage , 2013 .

[12]  P. Ajayan,et al.  Ultrathin planar graphene supercapacitors. , 2011, Nano letters.

[13]  Jannik C. Meyer,et al.  The structure of suspended graphene sheets , 2007, Nature.

[14]  A. Burke Ultracapacitors: why, how, and where is the technology , 2000 .

[15]  Jim P. Zheng,et al.  The Effect of Salt Concentration in Electrolytes on the Maximum Energy Storage for Double Layer Capacitors , 1997 .

[16]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[17]  M. El‐Kady,et al.  Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors , 2012, Science.

[18]  L. Staudenmaier,et al.  Verfahren zur Darstellung der Graphitsäure , 1898 .

[19]  Xuehong Lu,et al.  Hybrid Materials and Polymer Electrolytes for Electrochromic Device Applications , 2012, Advanced materials.

[20]  L. Qu,et al.  All‐Graphene Core‐Sheath Microfibers for All‐Solid‐State, Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles , 2013, Advanced materials.

[21]  Pedro P. Irazoqui,et al.  Graphitic Petal Electrodes for All‐Solid‐State Flexible Supercapacitors , 2014 .

[22]  Venkat Srinivasan,et al.  Studies on the Capacitance of Nickel Oxide Films: Effect of Heating Temperature and Electrolyte Concentration , 2000 .

[23]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[24]  Candace K. Chan,et al.  Printable thin film supercapacitors using single-walled carbon nanotubes. , 2009, Nano letters.

[25]  Tengfei Zhang,et al.  A High‐Performance Graphene Oxide‐Doped Ion Gel as Gel Polymer Electrolyte for All‐Solid‐State Supercapacitor Applications , 2013 .