Experimental study of a thermochemical compressor for an absorption/compression hybrid cycle
暂无分享,去创建一个
M. Venegas | R. Ventas | Antonio Lecuona | C. Vereda | C. Vereda | R. Ventas | A. Lecuona | M. Venegas
[1] A. Coronas,et al. Flow boiling heat transfer of ammonia/water mixture in a plate heat exchanger , 2010 .
[2] M. Venegas,et al. Boiling heat transfer and pressure drop of ammonia-lithium nitrate solution in a plate generator , 2010 .
[3] Da-Wen Sun,et al. Comparison of the performances of NH3-H2O, NH3-LiNO3 and NH3-NaSCN absorption refrigeration systems , 1998 .
[4] Shenyi Wu,et al. Innovations in vapour-absorption cycles , 2000 .
[5] N. I. Grigor'eva,et al. Combined heat and mass transfer during absorption in drops and films , 1977 .
[6] Reinhard Radermacher,et al. Absorption Chillers and Heat Pumps , 1996 .
[7] M. Izquierdo,et al. Spray absorbers in absorption systems using lithium nitrate–ammonia solution , 2005 .
[8] A. Ousaka,et al. Analysis of steam absorption by a subcooled droplet of aqueous solution of LiBr , 1992 .
[9] M. Venegas,et al. Optimum hot water temperature for absorption solar cooling , 2009 .
[10] M. Udayakumar,et al. Studies of compressor pressure ratio effect on GAXAC (generator–absorber–exchange absorption compression) cooler , 2008 .
[11] P. Riesch,et al. A cost effective absorption chiller with plate heat exchangers using water and hydroxides , 1998 .
[12] M. Udayakumar,et al. Heat transfer studies on a GAXAC (generator-absorber-exchange absorption compression) cooler , 2009 .
[13] M. Venegas,et al. Ammonia-lithium nitrate absorption chiller with an integrated low-pressure compression booster cycle for low driving temperatures. , 2010 .
[14] A. Z. Santiago. Transferencia de masa y calor en absorbedores adiabáticos con aplicación de la disolución nitrato de litio-amoniaco , 2011 .
[15] R. Lizarte,et al. Evaluation of mass absorption in LiBr flat-fan sheets , 2009 .
[16] A. Coronas,et al. Vapor−Liquid Equilibrium of Ammonia + Lithium Nitrate + Water and Ammonia + Lithium Nitrate Solutions from (293.15 to 353.15) K , 2007 .
[17] William M. Worek,et al. Adiabatic water absorption properties of an aqueous absorbent at very low pressures in a spray absorber , 2006 .
[18] Saman K. Halgamuge,et al. Mathematical modeling and experimental verification of an absorption chiller including three dimensional temperature and concentration distributions , 2013 .
[19] R. Ventas,et al. On the recirculation of ammonia-lithium nitrate in adiabatic absorbers for chillers , 2010 .
[20] M. Izquierdo,et al. Heat and mass transfer during absorption of ammonia vapour by LiNO3–NH3 solution droplets , 2004 .
[21] William A. Ryan. Water absorption in an adiabatic spray of aqueous lithium bromide solution , 1994 .
[22] W. Rivera,et al. Thermodynamic design data for absorption heat pump systems operating on ammonia-lithium nitrate—Part two. Heating , 1991 .
[23] M. Venegas,et al. Experimental assessment of ammonia adiabatic absorption into ammonia–lithium nitrate solution using a flat fan nozzle , 2011 .
[24] W. Beckman,et al. Solar Engineering of Thermal Processes , 1985 .