The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: Analytical solutions

[1]  V. Rossow On flow of electrically conducting fluids over a flat plate in the presence of a transverse magnetic field , 1957 .

[2]  Kumbakonam R. Rajagopal,et al.  Thermodynamics and stability of fluids of third grade , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  Stephen U. S. Choi Enhancing thermal conductivity of fluids with nano-particles , 1995 .

[4]  Shijun Liao,et al.  Analytic solutions of the temperature distribution in Blasius viscous flow problems , 2002, Journal of Fluid Mechanics.

[5]  S. Liao,et al.  Beyond Perturbation: Introduction to the Homotopy Analysis Method , 2003 .

[6]  Y. Xuan,et al.  Investigation on Convective Heat Transfer and Flow Features of Nanofluids , 2003 .

[7]  Shijun Liao,et al.  On the homotopy analysis method for nonlinear problems , 2004, Appl. Math. Comput..

[8]  Wenchang Tan,et al.  Stokes’ first problem for a second grade fluid in a porous half-space with heated boundary , 2005 .

[9]  C. Fetecau,et al.  On some axial Couette flows of non-Newtonian fluids , 2005 .

[10]  B. Yilbas,et al.  Entropy generation for pipe flow of a third grade fluid with Vogel model viscosity , 2006 .

[11]  Tasawar Hayat,et al.  Note on an exact solution for the pipe flow of a third-grade fluid , 2007 .

[12]  S. Nadeem,et al.  Unsteady MHD flow of a non-Newtonian fluid on a porous plate , 2007 .

[13]  Wenchang Tan,et al.  Stability analysis of a Maxwell fluid in a porous medium heated from below , 2007 .

[14]  M. Dehghan,et al.  Meshless Local Petrov--Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity , 2009 .

[15]  Wagner Enno,et al.  純FC‐84及びFC‐3284及びその二元混合物の核沸騰における高分解能測定 , 2009 .

[16]  K. Vajravelu,et al.  On the selection of auxiliary functions, operators, and convergence control parameters in the application of the Homotopy Analysis Method to nonlinear differential equations: A general approach , 2009 .

[17]  M. Y. Malik,et al.  Flow of a Third Grade Fluid between Coaxial Cylinders with Variable Viscosity , 2009 .

[18]  Mehdi Dehghan,et al.  Meshless local boundary integral equation (LBIE) method for the unsteady magnetohydrodynamic (MHD) flow in rectangular and circular pipes , 2009, Comput. Phys. Commun..

[19]  Mehdi Dehghan,et al.  The numerical solution of the second Painlevé equation , 2009 .

[20]  Stephen U. S. Choi NANOFLUIDS: FROM VISION TO REALITY THROUGH RESEARCH , 2009 .

[21]  M. Dehghan,et al.  Solving nonlinear fractional partial differential equations using the homotopy analysis method , 2010 .

[22]  M. Dehghan,et al.  Application of semi‐analytic methods for the Fitzhugh–Nagumo equation, which models the transmission of nerve impulses , 2010 .

[23]  M. Dehghan,et al.  A finite volume spectral element method for solving magnetohydrodynamic (MHD) equations , 2011 .

[24]  K. Khanafer,et al.  A critical synthesis of thermophysical characteristics of nanofluids , 2011 .