Multicolor containers, extremal entropy, and counting

In breakthrough results, Saxton-Thomason and Balogh-Morris-Samotij developed powerful theories of hypergraph containers. In this paper, we explore some consequences of these theories. We use a simple container theorem of Saxton-Thomason and an entropy-based framework to deduce container and counting theorems for hereditary properties of k-colourings of very general objects, which include both vertex- and edge-colourings of general hypergraph sequences as special cases. In the case of sequences of complete graphs, we further derive characterisation and transference results for hereditary properties in terms of their stability families and extremal entropy. This covers within a unified framework a great variety of combinatorial structures, some of which had not previously been studied via containers: directed graphs, oriented graphs, tournaments, multigraphs with bounded multiplicity and multicoloured graphs amongst others. Similar results were recently and independently obtained by Terry.

[1]  Victor Falgas-Ravry,et al.  Multicolour containers and the entropy of decorated graph limits , 2016, 1607.08152.

[2]  W. T. Gowers,et al.  Combinatorial theorems in sparse random sets , 2010, 1011.4310.

[3]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[4]  M. Wren Wagner , 1977 .

[6]  David J. Galvin,et al.  Three tutorial lectures on entropy and counting , 2014, 1406.7872.

[7]  Robert Morris,et al.  Hereditary Properties of Ordered Graphs , 2006 .

[8]  Hanno Lefmann,et al.  On graphs with a large number of edge-colorings avoiding a rainbow triangle , 2017, Eur. J. Comb..

[9]  Yoshiyasu Ishigami,et al.  The number of hypergraphs and colored Hypergraphs with hereditary properties , 2007, 0712.0425.

[10]  P. Erdös On the structure of linear graphs , 1946 .

[11]  Александр Антонович Сапоженко,et al.  О числе независимых множеств в расширителях@@@On the number of independent sets in extenders , 2001 .

[12]  Paul Erdös ON SOME PROBLEMS IN GRAPH THEORY , COMBINATORIAL ANALYSIS AND COMBINATORIAL NUMBER THEORY , 2004 .

[13]  D. Conlon Combinatorial theorems relative to a random set , 2014, 1404.3324.

[14]  Hong Liu,et al.  Upper bounds on the size of 4- and 6-cycle-free subgraphs of the hypercube , 2014, Eur. J. Comb..

[15]  Dhruv Mubayi,et al.  An Extremal Graph Problem with a Transcendental Solution , 2016, Combinatorics, Probability and Computing.

[16]  W. T. Gowers,et al.  On the KŁR conjecture in random graphs , 2013, 1305.2516.

[17]  Alexander A. Razborov,et al.  Flag algebras , 2007, Journal of Symbolic Logic.

[18]  Béla Bollobás,et al.  Hereditary properties of combinatorial structures: Posets and oriented graphs , 2007, J. Graph Theory.

[19]  S. Chowla,et al.  On Recursions Connected With Symmetric Groups I , 1951, Canadian Journal of Mathematics.

[20]  Jaime Gaspar,et al.  Structure and enumeration theorems for hereditary properties in finite relational languages , 2018, Ann. Pure Appl. Log..

[21]  N. Alon,et al.  The Number of Edge Colorings with no Monochromatic Cliques , 2004 .

[22]  V. E. Alekseev On the entropy values of hereditary classes of graphs , 1993 .

[23]  Paul Erdös,et al.  Some problems in graph theory , 1974 .

[24]  Yoshiharu Kohayakawa,et al.  OnK4-free subgraphs of random graphs , 1997, Comb..

[25]  Rudini Menezes Sampaio,et al.  Edge-colorings of graphs avoiding complete graphs with a prescribed coloring , 2016, Discret. Math..

[26]  V. Rödl,et al.  Extremal Hypergraph Problems and the Regularity Method , 2006 .

[27]  Miklós Simonovits,et al.  The typical structure of graphs without given excluded subgraphs , 2009, Random Struct. Algorithms.

[28]  Vojtech Rödl,et al.  The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent , 1986, Graphs Comb..

[29]  Daniel J. Kleitman,et al.  On the number of graphs without 4-cycles , 1982, Discret. Math..

[30]  Yoshiharu Kohayakawa,et al.  Hereditary Properties of Triple Systems , 2003, Combinatorics, Probability and Computing.

[31]  Béla Bollobás,et al.  Hereditary Properties of Tournaments , 2007, Electron. J. Comb..

[32]  M. Schacht Extremal results for random discrete structures , 2016, 1603.00894.

[33]  alcun K. grafo ASYMPTOTIC ENUMERATION OF Kn-FREE GRAPHS , 2004 .

[34]  Noga Alon,et al.  The structure of almost all graphs in a hereditary property , 2009, J. Comb. Theory B.

[35]  T. Lu ON K4-FREE SUBGRAPHS OF RANDOM GRAPHS , 1997 .

[36]  D. Saxton,et al.  Hypergraph containers , 2012, 1204.6595.

[37]  P. Erdos Some New Applications Ok Probability Methods to Combinatorial Analysis and Graph Theory , 2022 .

[38]  Rahil Baber Turán densities of hypercubes , 2012 .

[39]  Yi Zhao,et al.  On the structure of oriented graphs and digraphs with forbidden tournaments or cycles , 2014, J. Comb. Theory, Ser. B.

[40]  Tim Austin On exchangeable random variables and the statistics of large graphs and hypergraphs , 2008, 0801.1698.

[41]  P. Seymour,et al.  Excluding induced subgraphs , 2006 .

[42]  Béla Bollobás,et al.  Hereditary and Monotone Properties of Graphs , 2013, The Mathematics of Paul Erdős II.

[43]  Zelealem B. Yilma,et al.  The Erdős–Rothschild problem on edge-colourings with forbidden monochromatic cliques , 2016, Mathematical Proceedings of the Cambridge Philosophical Society.

[44]  Svante Janson,et al.  Graph properties, graph limits, and entropy , 2013, J. Graph Theory.

[45]  Roger C. Entringer,et al.  Largest induced subgraphs of the n-cube that contain no 4-cycles , 1989, J. Comb. Theory, Ser. B.

[46]  Brendan Nagle,et al.  Hereditary properties of hypergraphs , 2009, J. Comb. Theory B.

[47]  H. Prömel,et al.  Excluding Induced Subgraphs III: A General Asymptotic , 1992 .

[48]  Dhruv Mubayi,et al.  Extremal Theory of Locally Sparse Multigraphs , 2016, SIAM J. Discret. Math..

[49]  J. A. Bondy,et al.  A weighted generalization of Turán's theorem , 1997 .

[50]  T. Tao,et al.  The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.

[51]  Miklós Simonovits,et al.  The number of graphs without forbidden subgraphs , 2004, J. Comb. Theory B.

[52]  P. Erdos,et al.  A LIMIT THEOREM IN GRAPH THEORY , 1966 .

[53]  Alexandr V. Kostochka,et al.  On independent sets in hypergraphs , 2011, Random Struct. Algorithms.

[54]  M. Bálek,et al.  Large Networks and Graph Limits , 2022 .

[55]  Andrew Thomason,et al.  Simple Containers for Simple Hypergraphs , 2014, Combinatorics, Probability and Computing.

[56]  Béla Bollobás Surveys in Combinatorics 2007: Hereditary and monotone properties of combinatorial structures , 2007 .

[57]  Zoltán Füredi,et al.  Turán problems for integer‐weighted graphs , 2002, J. Graph Theory.