Challenges in analog IC design submicron CMOS technologies

In submicron CMOS devices, short-channel effects lead to shifts in threshold voltage, increased mismatch and noise. The velocity saturation limits the obtainable transconductance and hence also the high-speed performance. Lower supply voltages require the operational amplifier building block to operate rail-to-rail. In delta-sigma converters this leads to very-low-power converters. Considerable attention is given to circuit design for telecommunication applications, in which the inductor is making a comeback. The ultimate challenge-of analog design however is the cointegration with digital blocks, causing coupling noise and requiring sophisticated tools.

[1]  Georges Gielen,et al.  A methodology for analog high-level synthesis , 1994, Proceedings of IEEE Custom Integrated Circuits Conference - CICC '94.

[2]  Michiel Steyaert,et al.  A single-chip 900 MHz CMOS receiver front-end with a high performance low-IF topology , 1995, IEEE J. Solid State Circuits.

[3]  K. Suyama,et al.  MOSFET modeling for analog circuit CAD: Problems and prospects , 1993, Proceedings of IEEE Custom Integrated Circuits Conference - CICC '93.

[4]  W. Sansen,et al.  Mismatch characterization of small size MOS transistors , 1995, Proceedings International Conference on Microelectronic Test Structures.

[5]  Johan H. Huijsing,et al.  Low-voltage operational amplifier with rail-to-rail input and output ranges , 1989 .

[6]  M.J.M. Pelgrom,et al.  Matching properties of MOS transistors , 1989 .

[7]  Willy Sansen,et al.  Feedforward compensation techniques for high-frequency CMOS amplifiers , 1990 .

[8]  Willy Sansen,et al.  Analog interfaces for digital signal processing systems , 1993, The Kluwer international series in engineering and computer science.

[9]  Georges G. E. Gielen,et al.  An analogue module generator for mixed analogue/digital asic design , 1995, Int. J. Circuit Theory Appl..

[10]  Asad A. Abidi Radio-frequency integrated circuits for portable communications , 1994, Proceedings of IEEE Custom Integrated Circuits Conference - CICC '94.

[11]  Kenneth R. Laker,et al.  Design of analog integrated circuits and systems , 1994 .

[12]  M. Steyaert,et al.  An analytical model of planar inductors on lowly doped silicon substrates for high frequency analog design up to 3 GHz , 1996, 1996 Symposium on VLSI Circuits. Digest of Technical Papers.

[13]  M. Steyaert,et al.  A 1.8-GHz low-phase-noise spiral-LC CMOS VCO , 1996, 1996 Symposium on VLSI Circuits. Digest of Technical Papers.

[14]  Willy M. C. Sansen,et al.  Low-noise wide-band amplifiers in bipolar and CMOS technologies , 1990, The Kluwer international series in engineering and computer science.

[15]  Michel Steyaert,et al.  Opamp design towards maximum Gain-Bandwidth , 1993 .

[16]  Georges Gielen,et al.  A performance-driven placement tool for analog integrated circuits , 1995 .

[17]  J. P. Tero,et al.  Compact CMOS constant-g/sub m/ rail-to-rail input stage with g/sub m/-control by an electronic zener diode , 1996 .

[18]  Peter R. Kinget,et al.  A 1 GHz CMOS upconversion mixer , 1996, Proceedings of Custom Integrated Circuits Conference.

[19]  Francisco V. Fernández,et al.  Efficient symbolic computation of approximated small-signal characteristics of analog integrated circuits , 1995 .

[20]  Michiel Steyaert,et al.  A high-level design and optimization tool for analog RF receiver front-ends , 1995, ICCAD 1995.

[21]  Johan H. Huijsing,et al.  Compact CMOS constant-gm rail-to-rail input stages with gm-control by an electronic zener diode , 1995, ESSCIRC '95: Twenty-first European Solid-State Circuits Conference.

[22]  Robert G. Meyer,et al.  Future directions in silicon ICs for RF personal communications , 1995, Proceedings of the IEEE 1995 Custom Integrated Circuits Conference.

[23]  Eric A. Vittoz,et al.  Low-power design: ways to approach the limits , 1994, Proceedings of IEEE International Solid-State Circuits Conference - ISSCC '94.

[24]  S. Jantzi,et al.  A fourth-order bandpass sigma-delta modulator , 1993 .