Momentary Lapses: Moment Expansions and the Robustness of Minimum Distance Estimation

This paper explores the robustness of minimum distance (GMM) estimators focusing particularly on the effect of intermediate covariance matrix estimation on final estimator performance. Asymptotic expansions to order O ( n −3/2 ) are employed to construct O ( n −2 ) expansions for the variance of estimators constructed from preliminary least-squares and general M -estimators. In the former case, there is a rather curious robustifying effect due to estimation of the Eicker-White covariance matrix for error distributions with sufficiently large kurtosis.

[1]  G. Chamberlain Asymptotic efficiency in estimation with conditional moment restrictions , 1987 .

[2]  G. Box,et al.  Robustness to non-normality of regression tests , 1962 .

[3]  N. Mitrofanova An Asymptotic Expansion for the Maximum Likelihood Estimate of a Vector Parameter , 1967 .

[4]  Joseph G. Altonji,et al.  Small Sample Bias in GMM Estimation of Covariance Structures , 1994 .

[5]  W. Newey,et al.  Asymptotic Equivalence of Closest Moments and GMM Estimators , 1988, Econometric Theory.

[6]  R. Koenker,et al.  A Note on Amemiya'a form of the Weighted Least Squares Esrtimator , 1992 .

[7]  Joseph G. Altonji,et al.  Dynamic Factor Models of Consumption, Hours, and Income , 1987 .

[8]  Thomas J. Rothenberg,et al.  APPROXIMATE NORMALITY OF GENERALIZED LEAST SQUARES ESTIMATES , 1984 .

[9]  J. D. Sargan,et al.  Econometric Estimators and the Edgeworth Approximation , 1976 .

[10]  G. Chamberlain Multivariate regression models for panel data , 1982 .

[11]  A. Gallant,et al.  Nonlinear Statistical Models , 1988 .

[12]  P. J. Huber A Robust Version of the Probability Ratio Test , 1965 .

[13]  Frederick Mosteller,et al.  Data Analysis and Regression , 1978 .

[14]  A. Welsh On $M$-Processes and $M$-Estimation , 1989 .

[15]  W. Newey,et al.  Generalized method of moments specification testing , 1985 .

[16]  P. Phillips A General Theorem in the Theory of Asymptotic Expansions as Approximations to the Finite Sample Distributions of Econometric Estimators , 1977 .

[17]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[18]  W. R. Buckland,et al.  Contributions to Probability and Statistics , 1960 .

[19]  P. J. Huber Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .

[20]  P. Phillips FINITE SAMPLE ECONOMETRICS USING ERA'S , 1983 .

[21]  J. Jurečková Robust Estimators of Location and Their Second-Order Asymptotic Relations , 1985 .

[22]  David Ruppert,et al.  The Effect of Estimating Weights in Weighted Least Squares , 1988 .

[23]  Charles F. Manski,et al.  Analog estimation methods in econometrics , 1988 .

[24]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[25]  Wafik B. Beydoun,et al.  First Born and Rytov approximations: Modeling and inversion conditions in a canonical example , 1988 .

[26]  L. Hansen,et al.  Stochastic Consumption, Risk Aversion, and the Temporal Behavior of Asset Returns , 1983, Journal of Political Economy.

[27]  L. Hansen Large Sample Properties of Generalized Method of Moments Estimators , 1982 .

[28]  George Tauchen,et al.  Statistical Properties of Generalized Method-of-Moments Estimators of Structural Parameters Obtained From Financial Market Data , 1986 .

[29]  R. Koenker,et al.  Amemiya's form of the weighted least squares estimator , 1993 .

[30]  Stephen E. Fienberg,et al.  A Celebration of Statistics , 1985 .