Simulation of gain in quantum cascade lasers

The gain profile of a quantum cascade laser is strongly influenced by the lifetime of the carriers in the upper and lower laser state. The quantitative description of gain within the concept of nonequilibrium Green's functions allows for a detailed understanding of various features affecting the gain spectrum: Compensation effects between scattering processes in the upper and lower laser level, reduction of gain due to coherences between nearly degenerate upper laser states, and dispersive gain without inversion.

[1]  A. Wacker Semiconductor superlattices: a model system for nonlinear transport , 2001, cond-mat/0107207.

[2]  Tsuneya Ando,et al.  Line Width of Inter-Subband Absorption in Inversion Layers: Scattering from Charged Ions , 1985 .

[3]  Paul Harrison,et al.  Self-consistent scattering theory of transport and output characteristics of quantum cascade lasers , 2002 .

[4]  Mark Lee,et al.  Searching for a Solid-State Terahertz Technology , 2007, Science.

[5]  M. Woerner,et al.  Quantum mechanical wavepacket transport in quantum cascade laser structures , 2006 .

[6]  Carlo Sirtori,et al.  Mesoscopic phenomena in semiconductor nanostructures by quantum design , 1996 .

[7]  R C Iotti,et al.  Nature of charge transport in quantum-cascade lasers. , 2001, Physical review letters.

[8]  Dmitry G. Revin,et al.  Dispersive gain and loss in midinfrared quantum cascade laser , 2008 .

[9]  A. Wacker,et al.  Self-consistent theory of the gain linewidth for quantum-cascade lasers , 2004 .

[10]  A. Wacker,et al.  Density-matrix theory of the optical dynamics and transport in quantum cascade structures: The role of coherence , 2008, 0811.3736.

[11]  Stephan W Koch,et al.  Semiconductor-Laser Fundamentals , 1999 .

[12]  Mauro Pereira,et al.  Intervalence transverse-electric mode terahertz lasing without population inversion , 2008 .

[13]  Hartmut Haug,et al.  Quantum Kinetics in Transport and Optics of Semiconductors , 2004 .

[14]  Andreas Knorr,et al.  Theory of the ultrafast nonlinear response of terahertz quantum cascade laser structures , 2006 .

[15]  Mark Lee,et al.  Applied physics. Searching for a solid-state terahertz technology. , 2007, Science.

[16]  A. Wacker,et al.  Nonequilibrium Green’s function theory for transport and gain properties of quantum cascade structures , 2002 .

[17]  Cho,et al.  Quantum cascade lasers without intersubband population inversion. , 1996, Physical review letters.

[18]  Qing Hu,et al.  Continuous-wave operation of terahertz quantum-cascade lasers above liquid-nitrogen temperature , 2004 .

[19]  Qing Hu,et al.  Importance of coherence for electron transport in terahertz quantum cascade lasers , 2005 .

[20]  W. Chow,et al.  Nonequilibrium many-body theory of intersubband lasers , 2006, IEEE Journal of Quantum Electronics.

[21]  Andreas Wacker,et al.  Coexistence of gain and absorption , 2007 .

[22]  Norihiko Sekine,et al.  Bloch gain in quantum cascade lasers , 2007 .

[23]  Andreas Wacker Gain in quantum cascade lasers and superlattices: A quantum transport theory , 2002 .

[24]  F. Capasso,et al.  Recent progress in quantum cascade lasers and applications , 2001 .

[25]  W.W. Chow,et al.  Gain without Inversion: An Approach for THz Quantum Cascade Laser? , 2006, 2006 IEEE 20th International Semiconductor Laser Conference, 2006. Conference Digest..

[26]  Paul Harrison,et al.  Density matrix theory of transport and gain in quantum cascade lasers in a magnetic field , 2007, cond-mat/0702508.

[27]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.

[28]  Andreas Wacker,et al.  Temperature dependence of the gain profile for terahertz quantum cascade lasers , 2007, 0711.2645.

[29]  S. Kumar,et al.  Long wavelength terahertz quantum-cascade lasers with one-well injector , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[30]  Jerome Faist,et al.  Intersubband gain in a Bloch oscillator and Quantum cascade laser , 2003 .