Py3plex toolkit for visualization and analysis of multilayer networks

Complex networks are used as means for representing multimodal, real-life systems. With increasing amounts of data that lead to large multilayer networks consisting of different node and edge types, that can also be subject to temporal change, there is an increasing need for versatile visualization and analysis software. This work presents a lightweight Python library, Py3plex, which focuses on the visualization and analysis of multilayer networks. The library implements a set of simple graphical primitives supporting intra- as well as inter-layer visualization. It also supports many common operations on multilayer networks, such as aggregation, slicing, indexing, traversal, and more. The paper also focuses on how node embeddings can be used to speed up contemporary (multilayer) layout computation. The library’s functionality is showcased on both real and synthetic networks.

[1]  Nada Lavrac,et al.  HINMINE: heterogeneous information network mining with information retrieval heuristics , 2018, Journal of Intelligent Information Systems.

[2]  Mason A. Porter,et al.  Multilayer Analysis and Visualization of Networks , 2014, J. Complex Networks.

[3]  Jure Leskovec,et al.  node2vec: Scalable Feature Learning for Networks , 2016, KDD.

[4]  Michael Jünger,et al.  An Experimental Comparison of Fast Algorithms for Drawing General Large Graphs , 2005, GD.

[5]  Nada Lavrac,et al.  NetSDM: Semantic Data Mining with Network Analysis , 2019, J. Mach. Learn. Res..

[6]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[7]  Jan Kralj,et al.  CBSSD: community-based semantic subgroup discovery , 2019, Journal of Intelligent Information Systems.

[8]  David Auber,et al.  Tulip - A Huge Graph Visualization Framework , 2004, Graph Drawing Software.

[9]  Aric Hagberg,et al.  Exploring Network Structure, Dynamics, and Function using NetworkX , 2008, Proceedings of the Python in Science Conference.

[10]  Vladimir Batagelj,et al.  Pajek - Analysis and Visualization of Large Networks , 2001, Graph Drawing Software.

[11]  Weidong Huang,et al.  Measuring Effectiveness of Graph Visualizations: A Cognitive Load Perspective , 2009, Inf. Vis..

[12]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[13]  Rok Sosic,et al.  SNAP , 2016, ACM Trans. Intell. Syst. Technol..

[14]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[15]  Carl T. Bergstrom,et al.  The map equation , 2009, 0906.1405.

[16]  Georgios A. Pavlopoulos,et al.  Arena3D: visualization of biological networks in 3D , 2008, BMC Systems Biology.

[17]  Guy Melançon,et al.  Entanglement in Multiplex Networks: Understanding Group Cohesion in Homophily Networks , 2014, Social Network Analysis.

[18]  Nikos E. Kouvaris,et al.  Opinion competition dynamics on multiplex networks , 2017 .

[19]  Mathieu Bastian,et al.  Gephi: An Open Source Software for Exploring and Manipulating Networks , 2009, ICWSM.

[20]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[21]  Qing Li,et al.  Knowledge Discovery and Data Mining - PAKDD 2001, 5th Pacific-Asia Conference, Hong Kong, China, April 16-18, 2001, Proceedings , 2001, PAKDD.

[22]  A. Arenas,et al.  Mathematical Formulation of Multilayer Networks , 2013, 1307.4977.

[23]  Martin Wattenberg,et al.  Embedding Projector: Interactive Visualization and Interpretation of Embeddings , 2016, ArXiv.

[24]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[25]  F. F. Hunter,et al.  Larval Habitat Associations with Human Land Uses, Roads, Rivers, and Land Cover for Anopheles albimanus, A. pseudopunctipennis, and A. punctimacula (Diptera: Culicidae) in Coastal and Highland Ecuador , 2012, Front. Physio..

[26]  Jure Leskovec,et al.  Predicting multicellular function through multi-layer tissue networks , 2017, Bioinform..

[27]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[28]  Nada Lavrac,et al.  Community-Based Semantic Subgroup Discovery , 2017, NFMCP@PKDD/ECML.

[29]  Benoît Otjacques,et al.  The State of the Art in Multilayer Network Visualization , 2019, Comput. Graph. Forum.

[30]  Lin Wang,et al.  Evolutionary games on multilayer networks: a colloquium , 2015, The European Physical Journal B.

[31]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[32]  Palash Goyal,et al.  Graph Embedding Techniques, Applications, and Performance: A Survey , 2017, Knowl. Based Syst..

[33]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.

[34]  Z. Wang,et al.  The structure and dynamics of multilayer networks , 2014, Physics Reports.

[35]  Kathryn B. Laskey,et al.  Stochastic blockmodels: First steps , 1983 .

[36]  Reinhard Schneider,et al.  Arena3D: visualizing time-driven phenotypic differences in biological systems , 2012, BMC Bioinformatics.

[37]  Mason A. Porter,et al.  Multilayer networks , 2013, J. Complex Networks.

[38]  M. Jacomy,et al.  ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software , 2014, PloS one.

[39]  Ioannis G. Tollis,et al.  Graph Drawing , 1994, Lecture Notes in Computer Science.

[40]  Daniel R. Figueiredo,et al.  struc2vec: Learning Node Representations from Structural Identity , 2017, KDD.

[41]  Helen C. Purchase,et al.  Which Aesthetic has the Greatest Effect on Human Understanding? , 1997, GD.

[42]  Nada Lavrac,et al.  Py3plex: A Library for Scalable Multilayer Network Analysis and Visualization , 2018, COMPLEX NETWORKS.

[43]  N EKouvaris,et al.  Opinion competition dynamics on multiplex networks , 2017 .

[44]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[45]  Rafael C. Jimenez,et al.  The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases , 2013, Nucleic Acids Res..

[46]  Vito Latora,et al.  Structural reducibility of multilayer networks , 2015, Nature Communications.

[47]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[48]  Alexandre Arenas,et al.  Characterizing interactions in online social networks during exceptional events , 2015, Front. Phys..

[49]  Michelangelo Ceci,et al.  New Frontiers in Mining Complex Patterns , 2013, Lecture Notes in Computer Science.

[50]  David Harel,et al.  Graph Drawing by High-Dimensional Embedding , 2002, J. Graph Algorithms Appl..